Back to Search Start Over

On the algebraic dependence of holonomic functions

Authors :
Roques, Julien
Singer, Michael F.
Combinatoire, théorie des nombres (CTN)
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)
Department of Mathematics [Raleigh] (NCSU)
North Carolina State University [Raleigh] (NC State)
University of North Carolina System (UNC)-University of North Carolina System (UNC)
ANR-19-CE40-0018,DeRerumNatura,Décider l'irrationalité et la transcendance(2019)
Source :
Annales Henri Lebesgue. 5:141-177
Publication Year :
2022
Publisher :
Cellule MathDoc/CEDRAM, 2022.

Abstract

We study the form of possible algebraic relations between functions satisfying linear differential equations. In particular , if f and g satisfy linear differential equations and are algebraically dependent, we give conditions on the differential Galois group associated to f guaranteeing that g is a polynomial in f. We apply this to hypergeometric functions and iterated integrals.

Details

ISSN :
26449463
Volume :
5
Database :
OpenAIRE
Journal :
Annales Henri Lebesgue
Accession number :
edsair.doi.dedup.....0d005b284d5574e1e3290f9dba25c0c4