Back to Search
Start Over
Hidden-charm tetraquarks with strangeness in the chiral quark model
- Source :
- Physical Review
- Publication Year :
- 2021
- Publisher :
- American Physical Society (APS), 2021.
-
Abstract
- The hidden-charm tetraquarks with strangeness, $c\bar{c}s\bar{q}$ $(q=u,\,d)$, in $J^P=0^+$, $1^+$ and $2^+$ are systematically investigated in the framework of real- and complex-scaling range of a chiral quark model, whose parameters have been fixed in advance describing hadron, hadron-hadron and multiquark phenomenology. Each tetraquark configuration, compatible with the quantum numbers studied, is taken into account; this includes meson-meson, diquark-antidiquark and K-type arrangements of quarks with all possible color wave functions in four-body sector. Among the different numerical techniques to solve the Schr\"odinger-like 4-body bound state equation, we use a variational method in which the trial wave function is expanded in complex-range Gaussian basis functions, which is characterized by its simplicity and flexibility. This theoretical framework has already been used to study different kinds of multiquark systems, such as the hidden-charm pentaquarks, $P^+_c$, and doubly-charmed tetraquarks, $T^+_{cc}$. The recently reported $Z_{cs}$ states by the BESIII and LHCb collaborations are generally compatible with either compact tetraquark or hadronic molecular resonance configurations in our investigation. Moreover, several additional exotic resonances are found in the mass range between 3.8 GeV and 4.6 GeV.<br />Comment: 17 pages, 12 tables, 10 figures. arXiv admin note: substantial text overlap with arXiv:2101.04933
- Subjects :
- Physics
Quark
Particle physics
Nuclear Theory
High Energy Physics - Lattice (hep-lat)
High Energy Physics::Phenomenology
Quark model
Hadron
FOS: Physical sciences
Strangeness
Quantum number
High Energy Physics - Experiment
Nuclear Theory (nucl-th)
High Energy Physics - Experiment (hep-ex)
High Energy Physics - Phenomenology
High Energy Physics - Phenomenology (hep-ph)
High Energy Physics - Lattice
Bound state
High Energy Physics::Experiment
Tetraquark
Charm (quantum number)
Nuclear Experiment (nucl-ex)
Nuclear Experiment
Subjects
Details
- ISSN :
- 24700029 and 24700010
- Volume :
- 104
- Database :
- OpenAIRE
- Journal :
- Physical Review D
- Accession number :
- edsair.doi.dedup.....0cf6fcab686c55e3725c4d8d085aaddf