Back to Search Start Over

Efficient Monte Carlo Sampler for Detecting Parametric Objects in Large Scenes

Authors :
Florent Lafarge
Yannick Verdie
Geometric computing (GEOMETRICA)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)
Models of spatio-temporal structure for high-resolution image processing (AYIN)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
European Project: 257474,EC:FP7:ERC,ERC-2010-StG_20091028,IRON(2011)
Source :
Computer Vision – ECCV 2012 ISBN: 9783642337116, ECCV (3), ECCV 2012, ECCV 2012, Oct 2012, Firenze, Italy. pp.539-552, ⟨10.1007/978-3-642-33712-3_39⟩
Publication Year :
2012
Publisher :
Springer Berlin Heidelberg, 2012.

Abstract

International audience; Point processes have demonstrated e fficiency and competitiveness when addressing object recognition problems in vision. However, simulating these mathematical models is a diffi cult task, especially on large scenes. Existing samplers suff er from average performances in terms of computation time and stability. We propose a new sampling procedure based on a Monte Carlo formalism. Our algorithm exploits Markovian properties of point processes to perform the sampling in parallel. This procedure is embedded into a data-driven mechanism such that the points are non-uniformly distributed in the scene. The performances of the sampler are analyzed through a set of experiments on various object recognition problems from large scenes, and through comparisons to the existing algorithms.

Details

ISBN :
978-3-642-33711-6
ISBNs :
9783642337116
Database :
OpenAIRE
Journal :
Computer Vision – ECCV 2012 ISBN: 9783642337116, ECCV (3), ECCV 2012, ECCV 2012, Oct 2012, Firenze, Italy. pp.539-552, ⟨10.1007/978-3-642-33712-3_39⟩
Accession number :
edsair.doi.dedup.....0cf05767bc1eb01887eeead4a6272f5d
Full Text :
https://doi.org/10.1007/978-3-642-33712-3_39