Back to Search Start Over

6-Thioguanine and Its Analogs Promote Apoptosis of Castration-Resistant Prostate Cancer Cells in a BRCA2-Dependent Manner

Authors :
Luna Laera
Sergio Giannattasio
Loredana Moro
Nicoletta Guaragnella
Source :
Cancers, Cancers (Basel) 11 (2019). doi:10.3390/cancers11070945, info:cnr-pdr/source/autori:Laera, Luna; Guaragnella, Nicoletta; Giannattasio, Sergio; Moro, Loredana/titolo:6-Thioguanine and Its Analogs Promote Apoptosis of Castration-Resistant Prostate Cancer Cells in a BRCA2-Dependent Manner/doi:10.3390%2Fcancers11070945/rivista:Cancers (Basel)/anno:2019/pagina_da:/pagina_a:/intervallo_pagine:/volume:11, Cancers, Vol 11, Iss 7, p 945 (2019), Volume 11, Issue 7
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

Background: Mutations in the oncosuppressor gene BReast CAncer susceptibility gene 2 (BRCA2) predispose to aggressive forms of prostate cancer which show poor response to taxane-based therapy, the standard treatment for castration-resistant, aggressive prostate cancer. Herein, we addressed the question whether changes in BRCA2 expression, a potential surrogate marker for BRCA2 activity, may affect the response of castration-resistant prostate cancer cells to 6-thioguanine (6-TG), a thiopurine used in the treatment of haematological malignancies. Methods: Yeast, normal prostate cells and castration-resistant prostate cancer cells were treated with 6-TG or its analogues, in presence or absence of paclitaxel, or with olaparib, a poly-(ADP-ribose) polymerase (PARP) inhibitor currently in clinical trials for treatment of metastatic castration-resistant prostate cancer, and cell proliferation, apoptosis and androgen receptor (AR) levels were measured. Results: 6-TG inhibited cell proliferation in yeast, normal and castration-resistant prostate cancer cells but promoted apoptosis only in cancer cells. Suppression of BRCA2 expression by siRNA or shRNA increased the sensitivity to 6-TG- and olaparib-induced apoptosis but did not affect cancer cell response to taxane. Intriguingly, 6-TG reduced AR expression levels independently on BRCA2 expression. Instead, olaparib decreased AR levels only in BRCA2-knockdown prostate cancer cells. Notably, overexpression of BRCA2 resulted in resistance of castration-resistant prostate cancer cells to 6-TG-, taxane- and olaparib-based treatment but promoted sensitivity to apoptosis induced by 2-amino-6-bromopurine and 2,6&ndash<br />dithiopurine, two 6-TG analogues. Conclusions: Our results provide a pre-clinical rationale for the use of 6-TG in the treatment of BRCA2-deficient castration-resistant prostate cancers, and of certain 6-TG analogues for treatment of BRCA2-proficient prostate cancers.

Details

ISSN :
20726694
Volume :
11
Database :
OpenAIRE
Journal :
Cancers
Accession number :
edsair.doi.dedup.....0ce5d1b2244e7d57d1c6138c09665301
Full Text :
https://doi.org/10.3390/cancers11070945