Back to Search
Start Over
Mechanism for Prevention of Alcohol-Induced Liver Injury by Dietary Methyl Donors
- Source :
- Toxicological Sciences. 115:131-139
- Publication Year :
- 2010
- Publisher :
- Oxford University Press (OUP), 2010.
-
Abstract
- Alcohol-induced liver injury (ALI) has been associated with, among other molecular changes, abnormal hepatic methionine metabolism, resulting in decreased levels of S-adenosylmethionine (SAM). Dietary methyl donor supplements such as SAM and betaine mitigate ALI in animal models; however, the mechanisms of protection remain elusive. It has been suggested that methyl donors may act via attenuation of alcohol-induced oxidative stress. We hypothesized that the protective action of methyl donors is mediated by an effect on the oxidative metabolism of alcohol in the liver. Male C57BL/6J mice were administered a control high-fat diet or diet enriched in methyl donors with or without alcohol for 4 weeks using the enteral alcohol feeding model. As expected, attenuation of ALI and an increase in reduced glutathione:oxidized glutathione ratio were achieved with methyl donor supplementation. Interestingly, methyl donors led to a 35% increase in blood alcohol elimination rate, and while there was no effect on alcohol metabolism in the stomach, a profound effect on liver alcohol metabolism was observed. The catalase-dependent pathway of alcohol metabolism was induced, yet the increase in CYP2E1 activity by alcohol was blunted, which may be mitigating production of oxidants. Additional factors contributing to the protective effects of methyl donors in ALI were increased activity of low- and high-K(m) aldehyde dehydrogenases leading to lower hepatic acetaldehyde, maintenance of the efficient mitochondrial energy metabolism, and promotion of peroxisomal beta-oxidation. Profound changes in alcohol metabolism represent additional important mechanism of the protective effect of methyl donors in ALI.
- Subjects :
- Male
S-Adenosylmethionine
medicine.medical_specialty
Alcohol
Toxicology
medicine.disease_cause
Mice
chemistry.chemical_compound
Molecular Toxicology
Internal medicine
Peroxisomes
medicine
Animals
Ethanol metabolism
Liver Diseases, Alcoholic
Liver injury
Ethanol
Acetaldehyde
Central Nervous System Depressants
Cytochrome P-450 CYP2E1
Glutathione
Aldehyde Dehydrogenase
CYP2E1
Catalase
medicine.disease
Dietary Fats
Betaine
Cytochrome P-450 CYP2E1 Inhibitors
Mice, Inbred C57BL
Endocrinology
Liver
chemistry
Biochemistry
Enzyme Induction
Dietary Supplements
Oxidative stress
Subjects
Details
- ISSN :
- 10960929 and 10966080
- Volume :
- 115
- Database :
- OpenAIRE
- Journal :
- Toxicological Sciences
- Accession number :
- edsair.doi.dedup.....0cd4d77dae8796b151f512b940e54b33
- Full Text :
- https://doi.org/10.1093/toxsci/kfq031