Back to Search
Start Over
A Statistical Framework for Modern Network Science
- Source :
- Statist. Sci. 36, no. 1 (2021), 51-67
- Publication Year :
- 2021
- Publisher :
- Institute of Mathematical Statistics, 2021.
-
Abstract
- We discuss how sampling design, units, the observation mechanism and other basic statistical notions figure into modern network data analysis. These considerations pose several new challenges that cannot be adequately addressed by merely extending or generalizing classical methods. Such challenges stem from fundamental differences between the domains in which network data emerge and those for which classical tools were developed. By revisiting these basic statistical considerations, we suggest a framework in which to develop theory and methods for network analysis in a way that accounts for both conceptual and practical challenges of network science. We then discuss how some well-known model classes fit within this framework.
- Subjects :
- Statistics and Probability
Theoretical computer science
relational exchangeability
Network sampling
Computer science
sparse network
General Mathematics
Scale-free network
Network data
Network science
scale-free network
Sampling design
network sampling
edge exchangeable network
Statistics, Probability and Uncertainty
data generating process
relative exchangeability
Mechanism (sociology)
Network analysis
Subjects
Details
- ISSN :
- 08834237
- Volume :
- 36
- Database :
- OpenAIRE
- Journal :
- Statistical Science
- Accession number :
- edsair.doi.dedup.....0cb7a93aadd5a1429a1b964b67bc13e2
- Full Text :
- https://doi.org/10.1214/19-sts759