Back to Search Start Over

Cytoprotective Role of Nrf2 in Electrical Pulse Stimulated C2C12 Myotube

Authors :
Junichi Shoda
Sechang Oh
Eiji Warabi
Masaki Horie
Shoichi Komine
Source :
PLoS ONE, Vol 10, Iss 12, p e0144835 (2015), PLoS ONE
Publication Year :
2015
Publisher :
Public Library of Science (PLoS), 2015.

Abstract

Regular physical exercise is central to a healthy lifestyle. However, exercise-related muscle contraction can induce reactive oxygen species and reactive nitrogen species (ROS/RNS) production in skeletal muscle. The nuclear factor-E2-related factor-2 (Nrf2) transcription factor is a cellular sensor for oxidative stress. Regulation of nuclear Nrf2 signaling regulates antioxidant responses and protects organ structure and function. However, the role of Nrf2 in exercise- or contraction-induced ROS/RNS production in skeletal muscle is not clear. In this study, using differentiated C2C12 cells and electrical pulse stimulation (EPS) of muscle contraction, we explored whether Nrf2 plays a role in the skeletal muscle response to muscle contraction-induced ROS/RNS. We found that EPS (40 V, 1 Hz, 2 ms) stimulated ROS/RNS accumulation and Nrf2 activation. We also showed that expression of NQO1, HO-1 and GCLM increased after EPS-induced muscle contraction and was remarkably suppressed in cells with Nrf2 knockdown. We also found that the antioxidant N-acetylcysteine (NAC) significantly attenuated Nrf2 activation after EPS, whereas the nitric oxide synthetase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) did not. Furthermore, Nrf2 knockdown after EPS markedly decreased ROS/RNS redox potential and cell viability and increased expression of the apoptosis marker Annexin V in C2C12 myotubes. These results indicate that Nrf2 activation and expression of Nrf2 regulated-genes protected muscle against the increased ROS caused by EPS-induced muscle contraction. Thus, our findings suggest that Nrf2 may be a key factor for preservation of muscle function during muscle contraction.

Details

ISSN :
19326203
Volume :
10
Database :
OpenAIRE
Journal :
PLOS ONE
Accession number :
edsair.doi.dedup.....0cab4fd07ba9b5b31ed2faa8f6ff8305