Back to Search
Start Over
Spectral synthesis for coadjoint orbits of nilpotent Lie groups
- Source :
- Mathematische Zeitschrift, Mathematische Zeitschrift, Springer, 2016, 284 (3-4), pp.1111-1136. ⟨10.1007/s00209-016-1691-0⟩
- Publication Year :
- 2014
-
Abstract
- We determine the space of primary ideals in the group algebra $L^1(G)$ of a connected nilpotent Lie group by identifying for every $\pi\in\hat G $ the family ${\mathcal I}^\pi $ of primary ideals with hull $\{\pi\}$ with the family of invariant polynomials of a certain finite dimensional subspace ${\mathcal P}_Q^\pi $ of the space of polynomials ${\mathcal P}(G) $ on $G $.<br />Comment: 25 pages
- Subjects :
- Spectral synthesis
General Mathematics
Minimal ideal
01 natural sciences
Combinatorics
Coadjoint orbit
Mathematics Subject Classification Primary 43A45 Secondary 43A20 22E25 22E27
Primary ideal
Classical Analysis and ODEs (math.CA)
FOS: Mathematics
[MATH]Mathematics [math]
0101 mathematics
Invariant (mathematics)
Representation Theory (math.RT)
Primary 43A45, Secondary 43A20, 22E25, 22E27
ComputingMilieux_MISCELLANEOUS
0105 earth and related environmental sciences
Mathematics
Discrete mathematics
010505 oceanography
010102 general mathematics
Lie group
Group algebra
16. Peace & justice
Linear subspace
Nilpotent
Mathematics - Classical Analysis and ODEs
Nilpotent Lie group
Mathematics - Representation Theory
Subjects
Details
- Language :
- English
- ISSN :
- 00255874 and 14321823
- Database :
- OpenAIRE
- Journal :
- Mathematische Zeitschrift, Mathematische Zeitschrift, Springer, 2016, 284 (3-4), pp.1111-1136. ⟨10.1007/s00209-016-1691-0⟩
- Accession number :
- edsair.doi.dedup.....0c95d304f5fbc102ae3ededa3cb94941
- Full Text :
- https://doi.org/10.1007/s00209-016-1691-0⟩