Back to Search Start Over

Geometric unmixing of large hyperspectral images: a barycentric coordinate approach

Authors :
Paul Honeine
Cedric Richard
Laboratoire Modélisation et Sûreté des Systèmes (LM2S)
Institut Charles Delaunay (ICD)
Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
Joseph Louis LAGRANGE (LAGRANGE)
Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur
Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Source :
IEEE Transactions on Geoscience and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2012, 50 (6), pp.2185-2195. ⟨10.1109/TGRS.2011.2170999⟩, IEEE Transactions on Geoscience and Remote Sensing, 2012, 50 (6), pp.2185-2195. ⟨10.1109/TGRS.2011.2170999⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; In hyperspectral imaging, spectral unmixing is one of the most challenging and fundamental problems. It consists of breaking down the spectrum of a mixed pixel into a set of pure spectra, called endmembers, and their contributions, called abundances. Many endmember extraction techniques have been proposed in literature, based on either a statistical or a geometrical formulation. However, most, if not all, of these techniques for estimating abundances use a least-squares solution. In this paper, we show that abundances can be estimated using a geometric formulation. To this end, we express abundances with the barycentric coordinates in the simplex defined by endmembers. We propose to write them in terms of a ratio of volumes or a ratio of distances, which are quantities that are often computed to identify endmembers. This property allows us to easily incorporate abundance estimation within conventional endmember extraction techniques, without incurring additional computational complexity. We use this key property with various endmember extraction techniques, such as N-Findr, vertex component analysis, simplex growing algorithm, and iterated constrained endmembers. The relevance of the method is illustrated with experimental results on real hyperspectral images.

Details

Language :
English
ISSN :
01962892
Database :
OpenAIRE
Journal :
IEEE Transactions on Geoscience and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2012, 50 (6), pp.2185-2195. ⟨10.1109/TGRS.2011.2170999⟩, IEEE Transactions on Geoscience and Remote Sensing, 2012, 50 (6), pp.2185-2195. ⟨10.1109/TGRS.2011.2170999⟩
Accession number :
edsair.doi.dedup.....0c3c3198983d8e6d4eddc550463fd26d