Back to Search Start Over

LISA Pathfinder platform stability and drag-free performance

Authors :
N. Korsakova
Gerhard Heinzel
Michele Armano
Ian Harrison
M. Freschi
Henri Inchauspe
R. Giusteri
Ph. Jetzer
M. de Deus Silva
Domenico Giardini
J. P. López-Zaragoza
Rita Dolesi
J. Baird
J. Grzymisch
H. Ward
W. J. Weber
Ferran Gibert
F. Martin-Porqueras
Daniele Vetrugno
E. D. Fitzsimons
F. Rivas
Peter Wass
S. Paczkowski
Jacob Slutsky
L. Martin-Polo
Valerio Ferroni
Luigi Ferraioli
D. Hoyland
L. Wissel
P. Zweifel
James Ira Thorpe
Oliver Jennrich
Antonella Cavalleri
Gudrun Wanner
M. Hueller
N. Meshksar
L. Mendes
P. Pivato
Juan Ramos-Castro
Karsten Danzmann
Davor Mance
J. Martino
A. M. Cruise
D. Bortoluzzi
Nikolaos Karnesis
Michael Perreur-Lloyd
Miquel Nofrarías
José F. F. Mendes
Antoine Petiteau
D. Texier
Paul McNamara
M. Born
M. Hewitson
Carlos F. Sopuerta
Lluis Gesa
B. Kaune
Ingo Diepholz
R. Maarschalkerweerd
A. Wittchen
Eric Plagnol
Víctor S. Martín
Catia Grimani
Ivan Lloro
J. Reiche
A. Cesarini
G. Russano
D. I. Robertson
Daniel Hollington
S. Vitale
T. J. Sumner
L. Liu
E. Castelli
J. A. Lobo
Christian J. Killow
G. Dixon
Pierre Binétruy
Heather Audley
Ignacio Mateos
LISA Pathfinder Collaboration
Science and Technology Facilities Council (STFC)
AstroParticule et Cosmologie (APC (UMR_7164))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
LISA Pathfinder
Observatoire de Paris
PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris
PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Source :
Physical Review D, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Physical Review D, American Physical Society, 2019, 99 (8), pp.082001. ⟨10.1103/PhysRevD.99.082001⟩, Phys.Rev.D, Phys.Rev.D, 2019, 99 (8), pp.082001. ⟨10.1103/PhysRevD.99.082001⟩, Recercat. Dipósit de la Recerca de Catalunya, instname
Publication Year :
2019
Publisher :
American Physical Society, 2019.

Abstract

The science operations of the LISA Pathfinder mission has demonstrated the feasibility of sub-femto-g free-fall of macroscopic test masses necessary to build a LISA-like gravitational wave observatory in space. While the main focus of interest, i.e. the optical axis or the $x$-axis, has been extensively studied, it is also of interest to evaluate the stability of the spacecraft with respect to all the other degrees of freedom. The current paper is dedicated to such a study, with a focus set on an exhaustive and quantitative evaluation of the imperfections and dynamical effects that impact the stability with respect to its local geodesic. A model of the complete closed-loop system provides a comprehensive understanding of each part of the in-loop coordinates spectra. As will be presented, this model gives very good agreements with LISA Pathfinder flight data. It allows one to identify the physical noise source at the origin and the physical phenomena underlying the couplings. From this, the performances of the stability of the spacecraft, with respect to its geodesic, are extracted as a function of frequency. Close to $1 mHz$, the stability of the spacecraft on the $X_{SC}$, $Y_{SC}$ and $Z_{SC}$ degrees of freedom is shown to be of the order of $5.0\ 10^{-15} m\ s^{-2}/\sqrt{Hz}$ for X and $4.0 \ 10^{-14} m\ s^{-2}/\sqrt{Hz}$ for Y and Z. For the angular degrees of freedom, the values are of the order $3\ 10^{-12} rad\ s^{-2}/\sqrt{Hz}$ for $\Theta_{SC}$ and $3\ 10^{-13} rad\ s^{-2}/\sqrt{Hz}$ for $H_{SC}$ and $\Phi_{SC}$.<br />Comment: 16 pages, 10 figures

Details

Language :
English
ISSN :
24700010, 15507998, and 15502368
Database :
OpenAIRE
Journal :
Physical Review D, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Physical Review D, American Physical Society, 2019, 99 (8), pp.082001. ⟨10.1103/PhysRevD.99.082001⟩, Phys.Rev.D, Phys.Rev.D, 2019, 99 (8), pp.082001. ⟨10.1103/PhysRevD.99.082001⟩, Recercat. Dipósit de la Recerca de Catalunya, instname
Accession number :
edsair.doi.dedup.....0c34b16197cdf8c0606c412f1263db4d