Back to Search Start Over

On quasi-invariant transverse measures for the horospherical foliation of a negatively curved manifold

Authors :
Barbara Schapira
Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO)
Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
Arxiv, Import
Source :
Ergodic Theory and Dynamical Systems, Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2004, 24, pp.227-255
Publication Year :
2002

Abstract

If $M$ is a compact or convex-cocompact negatively curved manifold, we associate to any Gibbs measure on $\tm$ a quasi-invariant transverse measure for the horospherical foliation, and prove that this measure is uniquely determined by its Radon-Nikodym cocycle. (This extends the Bowen-Marcus unique ergodicity result for this foliation.) We shall also prove equidistribution properties for the leaves of the foliation w.r.t. these Gibbs measures. We use these results in the study of invaiant meausres for horospherical foliations on regular covers of $M$.<br />28 pages, 6 figures

Details

Language :
English
ISSN :
01433857 and 14694417
Database :
OpenAIRE
Journal :
Ergodic Theory and Dynamical Systems, Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2004, 24, pp.227-255
Accession number :
edsair.doi.dedup.....0c1ead045ca84d8baa3eaa27e3149be9