Back to Search Start Over

A stochastic model for speculative bubbles

Authors :
Gadat, Sébastien
Miclo, Laurent
Panloup, Fabien
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
ALEA : Latin American Journal of Probability and Mathematical Statistics, ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2015, 12, pp.491-532, ALEA : Latin American Journal of Probability and Mathematical Statistics, 2015, 12, pp.491-532
Publication Year :
2013

Abstract

This paper aims to provide a simple modelling of speculative bubbles and derive some quantitative properties of its dynamical evolution. Starting from a description of individual speculative behaviours, we build and study a second order Markov process, which after simple transformations can be viewed as a turning two-dimensional Gaussian process. Then, our main problem is to ob- tain some bounds for the persistence rate relative to the return time to a given price. In our main results, we prove with both spectral and probabilistic methods that this rate is almost proportional to the turning frequency {\omega} of the model and provide some explicit bounds. In the continuity of this result, we build some estimators of {\omega} and of the pseudo-period of the prices. At last, we end the paper by a proof of the quasi-stationary distribution of the process, as well as the existence of its persistence rate.<br />Comment: 53 Pages, 8 Figures

Details

Language :
English
ISSN :
19800436
Database :
OpenAIRE
Journal :
ALEA : Latin American Journal of Probability and Mathematical Statistics, ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2015, 12, pp.491-532, ALEA : Latin American Journal of Probability and Mathematical Statistics, 2015, 12, pp.491-532
Accession number :
edsair.doi.dedup.....0c1b2541a953de49eff3b686af7d6a68