Back to Search Start Over

Amorphous-to-crystal transition in the layer-by-layer growth of bivalve shell prisms

Authors :
Julien Duboisset
Patrick Ferrand
Arthur Baroni
Tilman A. Grünewald
Hamadou Dicko
Olivier Grauby
Jeremie Vidal-Dupiol
Denis Saulnier
Le Moullac Gilles
Martin Rosenthal
Manfred Burghammer
Julius Nouet
Corinne Chevallard
Alain Baronnet
Virginie Chamard
MOSAIC (MOSAIC)
Institut FRESNEL (FRESNEL)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Coherent Optical Microscopy and X-rays (COMiX)
Centre Interdisciplinaire de Nanoscience de Marseille (CINaM)
Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
Interactions Hôtes-Pathogènes-Environnements (IHPE)
Université de Perpignan Via Domitia (UPVD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Ecosystèmes Insulaires Océaniens (UMR 241) (EIO)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de la Polynésie Française (UPF)-Institut Louis Malardé [Papeete] (ILM)
Institut de Recherche pour le Développement (IRD)
European Synchroton Radiation Facility [Grenoble] (ESRF)
Géosciences Paris Saclay (GEOPS)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS)
Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685)
Institut Rayonnement Matière de Saclay (IRAMIS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
European Project: 724881,H2020,3D-BioMat(2017)
Source :
Acta Biomaterialia, Acta Biomaterialia, 2022, 142, pp.194-207. ⟨10.1016/j.actbio.2022.01.024⟩, Acta Biomaterialia (1742-7061) (Elsevier BV), 2022-04, Vol. 142, P. 194-207, 'Acta Biomaterialia ', vol: 142, pages: 194-207 (2022)
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

Biomineralization integrates complex physical and chemical processes bio-controlled by the living organisms through ionic concentration regulation and organic molecules production. It allows tuning the structural, optical and mechanical properties of hard tissues during ambient-condition crystallisation, motivating a deeper understanding of the underlying processes. By combining state-of-the-art optical and X-ray microscopy methods, we investigated early-mineralized calcareous units from two bivalve species, Pinctada margaritifera and Pinna nobilis, revealing chemical and crystallographic structural insights. In these calcite units, we observed ring-like structural features correlated with a lack of calcite and an increase of amorphous calcium carbonate and proteins contents. The rings also correspond to a larger crystalline disorder and a larger strain level. Based on these observations, we propose a temporal biomineralization cycle, initiated by the production of an amorphous precursor layer, which further crystallizes with a transition front progressing radially from the unit centre, while the organics are expelled towards the prism edge. Simultaneously, along the shell thickness, the growth occurs following a layer-by-layer mode. These findings open biomimetic perspectives for the design of refined crystalline materials. STATEMENT OF SIGNIFICANCE: Calcareous biominerals are amongst the most present forms of biominerals. They exhibit astonishing structural, optical and mechanical properties while being formed at ambient synthesis conditions from ubiquitous ions, motivating the deep understanding of biomineralization. Here, we unveil the first formation steps involved in the biomineralization cycle of prismatic units of two bivalve species by applying a new multi-modal non-destructive characterization approach, sensitive to chemical and crystalline properties. The observations of structural features in mineralized units of different ages allowed the derivation of a temporal sequence for prism biomineralization, involving an amorphous precursor, a radial crystallisation front and a layer-by-layer sequence. Beyond these chemical and physical findings, the herein introduced multi-modal approach is highly relevant to other biominerals and bio-inspired studies. ispartof: ACTA BIOMATERIALIA vol:142 pages:194-207 ispartof: location:England status: published

Details

ISSN :
17427061
Volume :
142
Database :
OpenAIRE
Journal :
Acta Biomaterialia
Accession number :
edsair.doi.dedup.....0b820a172bfd0bb902e363cfb0544185
Full Text :
https://doi.org/10.1016/j.actbio.2022.01.024