Back to Search Start Over

Molecular dynamics at an energy-level crossing

Authors :
André Martinez
Philippe Briet
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
CPT - E8 Dynamique quantique et analyse spectrale
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)
Université de Bologne
Briet P.
Martinez A.
Source :
Journal of Differential Equations, Journal of Differential Equations, 2019, 267 (10), pp.5662-5700. ⟨10.1016/j.jde.2019.06.004⟩, Journal of Differential Equations, Elsevier, 2019, 267 (10), pp.5662-5700. ⟨10.1016/j.jde.2019.06.004⟩
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

This paper is a continuation of a previous work about the study of the survival probability modelizing the molecular predissociation in the Born-Oppenheimer framework. Here we consider the critical case where the reference energy corresponds to the value of a crossing of two electronic levels, one of these two levels being confining while the second dissociates. We show that the survival probability associated to a certain initial state is a sum of the usual time-dependent exponential contribution, and a reminder term that is jointly polynomially small with respect to the time and the semiclassical parameter. We also compute explicitly the main contribution of the remainder.<br />37 pages, 1 figure

Details

ISSN :
00220396 and 10902732
Volume :
267
Database :
OpenAIRE
Journal :
Journal of Differential Equations
Accession number :
edsair.doi.dedup.....0b44518eaac4dbdc2c37a5b7e07d7310
Full Text :
https://doi.org/10.1016/j.jde.2019.06.004