Back to Search Start Over

A holographic principle for the existence of imaginary Killing spinors

Authors :
Sebastián Montiel
Oussama Hijazi
Simon Raulot
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Universidad de Granada (UGR)
Laboratoire de Mathématiques Raphaël Salem (LMRS)
Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Geometry and Physics, Journal of Geometry and Physics, Elsevier, 2015, 91, pp.12-28. ⟨10.1016/j.geomphys.2015.01.012⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

Suppose that $\Sigma=\partial\Omega$ is the $n$-dimensional boundary, with positive (inward) mean curvature $H$, of a connected compact $(n+1)$-dimensional Riemannian spin manifold $(\Omega^{n+1},g)$ whose scalar curvature $R\ge -n(n+1)k^2$, for some $k\textgreater{}0$. If $\Sigma$ admits an isometric and isospin immersion $F$ into the hyperbolic space ${\mathbb{H}^{n+1}\_{-k^2}}$, we define a quasi-local mass and prove its positivity as well as the associated rigidity statement. The proof is based on a holographic principle for the existence of an imaginary Killing spinor. For $n=2$, we also show that its limit, for coordinate spheres in an Asymptotically Hyperbolic (AH) manifold, is the mass of the (AH) manifold.<br />Comment: in Journal of Geometry and Physics, Elsevier, 2015

Details

Language :
English
ISSN :
03930440
Database :
OpenAIRE
Journal :
Journal of Geometry and Physics, Journal of Geometry and Physics, Elsevier, 2015, 91, pp.12-28. ⟨10.1016/j.geomphys.2015.01.012⟩
Accession number :
edsair.doi.dedup.....0b208f52946848660579cd5e8c8f6be7