Back to Search Start Over

A Comparison of Implications in Orthomodular Quantum Logic—Morphological Analysis of Quantum Logic

Authors :
Mitsuhiko Fujio
Source :
International Journal of Mathematics and Mathematical Sciences, Vol 2012 (2012)
Publication Year :
2012
Publisher :
Hindawi Limited, 2012.

Abstract

Morphological operators are generalized to lattices as adjunction pairs (Serra, 1984; Ronse, 1990; Heijmans and Ronse, 1990; Heijmans, 1994). In particular, morphology for set lattices is applied to analyze logics through Kripke semantics (Bloch, 2002; Fujio and Bloch, 2004; Fujio, 2006). For example, a pair of morphological operators as an adjunction gives rise to a temporalization of normal modal logic (Fujio and Bloch, 2004; Fujio, 2006). Also, constructions of models for intuitionistic logic or linear logics can be described in terms of morphological interior and/or closure operators (Fujio and Bloch, 2004). This shows that morphological analysis can be applied to various non-classical logics. On the other hand, quantum logics are algebraically formalized as orhomodular or modular ortho-complemented lattices (Birkhoff and von Neumann, 1936; Maeda, 1980; Chiara and Giuntini, 2002), and shown to allow Kripke semantics (Chiara and Giuntini, 2002). This suggests the possibility of morphological analysis for quantum logics. In this article, to show an efficiency of morphological analysis for quantum logic, we consider the implication problem in quantum logics (Chiara and Giuntini, 2002). We will give a comparison of the 5 polynomial implication connectives available in quantum logics.

Details

Language :
English
ISSN :
16870425 and 01611712
Volume :
2012
Database :
OpenAIRE
Journal :
International Journal of Mathematics and Mathematical Sciences
Accession number :
edsair.doi.dedup.....0af25ab610a891210f55504f20430a0c