Back to Search
Start Over
A visual metaphor describing neural dynamics in schizophrenia
- Source :
- PLoS ONE, PLoS One (print), 3 (7)(2577), 1-9. Public Library of Science, PLoS ONE, Vol 3, Iss 7, p e2577 (2008), PLoS ONE, 3(7). Public Library of Science
- Publication Year :
- 2008
- Publisher :
- Public Library of Science, 2008.
-
Abstract
- BACKGROUND: In many scientific disciplines the use of a metaphor as an heuristic aid is not uncommon. A well known example in somatic medicine is the 'defense army metaphor' used to characterize the immune system. In fact, probably a large part of the everyday work of doctors consists of 'translating' scientific and clinical information (i.e. causes of disease, percentage of success versus risk of side-effects) into information tailored to the needs and capacities of the individual patient. The ability to do so in an effective way is at least partly what makes a clinician a good communicator. Schizophrenia is a severe psychiatric disorder which affects approximately 1% of the population. Over the last two decades a large amount of molecular-biological, imaging and genetic data have been accumulated regarding the biological underpinnings of schizophrenia. However, it remains difficult to understand how the characteristic symptoms of schizophrenia such as hallucinations and delusions are related to disturbances on the molecular-biological level. In general, psychiatry seems to lack a conceptual framework with sufficient explanatory power to link the mental- and molecular-biological domains. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present an essay-like study in which we propose to use visualized concepts stemming from the theory on dynamical complex systems as a 'visual metaphor' to bridge the mental- and molecular-biological domains in schizophrenia. We first describe a computer model of neural information processing; we show how the information processing in this model can be visualized, using concepts from the theory on complex systems. We then describe two computer models which have been used to investigate the primary theory on schizophrenia, the neurodevelopmental model, and show how disturbed information processing in these two computer models can be presented in terms of the visual metaphor previously described. Finally, we describe the effects of dopamine neuromodulation, of which disturbances have been frequently described in schizophrenia, in terms of the same visualized metaphor. CONCLUSIONS/SIGNIFICANCE: The conceptual framework and metaphor described offers a heuristic tool to understand the relationship between the mental- and molecular-biological domains in an intuitive way. The concepts we present may serve to facilitate communication between researchers, clinicians and patients.
- Subjects :
- Metaphor
media_common.quotation_subject
Schizophrenia (object-oriented programming)
Dopamine
Population
Models, Neurological
lcsh:Medicine
Prefrontal Cortex
Systems Theory
Interpersonal communication
Bioinformatics
Models, Biological
Pattern Recognition, Automated
Systems theory
Artificial Intelligence
Memory
Humans
Neuroscience/Theoretical Neuroscience
education
lcsh:Science
media_common
Neurons
Mental Health/Schizophrenia and Other Psychoses
education.field_of_study
Science and Society/Education
Multidisciplinary
Principal (computer security)
lcsh:R
Information processing
Models, Theoretical
Conceptual framework
Immune System
Schizophrenia
lcsh:Q
Schizophrenic Psychology
Psychology
Software
Cognitive psychology
Research Article
Neuroscience
Subjects
Details
- ISSN :
- 19326203
- Volume :
- 3
- Issue :
- 2577
- Database :
- OpenAIRE
- Journal :
- PLoS ONE
- Accession number :
- edsair.doi.dedup.....0af00504e113bd3f5337a9bb533c0ffe
- Full Text :
- https://doi.org/10.1371/journal.pone.0002577