Back to Search
Start Over
Host-guest selectivity in a series of isoreticular metal-organic frameworks: observation of acetylene-to-alkyne and carbon dioxide-to-amide interactions
- Source :
- Humby, J, Benson, O, Smith, G, Argent, S, Da Silva, I, Cheng, Y, Rudic, S, Manuel, P, Frogley, M, Cinque, G, Saunders, L K, Vitorica-yrzebal, I, Whitehead, G F S, Easun, T, Lewis, W, Blake, A J, Ramirez-cuesta, A J, Yang, S & Schroder, M 2019, ' Host-guest selectivity in a series of isoreticular metal-organic frameworks: observation of acetylene-to-alkyne and carbon dioxide-to-amide interactions ', Chemical Science, vol. 10, no. 4, pp. 1098-1106 . https://doi.org/10.1039/C8SC03622E, Chemical Science
- Publication Year :
- 2019
-
Abstract
- We report a series of six isoreticular metal–organic frameworks (MOFs) for selective gas adsorption, specifically for selective adsorption of CO2 and C2H2.<br />In order to develop new porous materials for applications in gas separations such as natural gas upgrading, landfill gas processing and acetylene purification it is vital to gain understanding of host–substrate interactions at a molecular level. Herein we report a series of six isoreticular metal–organic frameworks (MOFs) for selective gas adsorption. These materials do not incorporate open metal sites and thus provide an excellent platform to investigate the effect of the incorporation of ligand functionality via amide and alkyne groups on substrate binding. By reducing the length of the linker in our previously reported MFM-136, we report much improved CO2/CH4 (50 : 50) and CO2/N2 (15 : 85) selectivity values of 20.2 and 65.4, respectively (1 bar and 273 K), in the new amide-decorated MOF, MFM-126. The CO2 separation performance of MFM-126 has been confirmed by dynamic breakthrough experiments. In situ inelastic neutron scattering and synchrotron FT-IR microspectroscopy were employed to elucidate dynamic interactions of adsorbed CO2 molecules within MFM-126. Upon changing the functionality to an alkyne group in MFM-127, the CO2 uptake decreases but the C2H2 uptake increases by 68%, leading to excellent C2H2/CO2 and C2H2/CH4 selectivities of 3.7 and 21.2, respectively. Neutron powder diffraction enabled the direct observation of the preferred binding domains in MFM-126 and MFM-127, and, to the best of our knowledge, we report the first example of acetylene binding to an alkyne moiety in a porous material, with over 50% of the acetylene observed within MFM-127 displaying interactions (
- Subjects :
- chemistry.chemical_classification
Chemistry(all)
010405 organic chemistry
Chemistry
Alkyne
General Chemistry
010402 general chemistry
01 natural sciences
Combinatorial chemistry
0104 chemical sciences
chemistry.chemical_compound
Adsorption
Acetylene
Amide
Moiety
Molecule
Metal-organic framework
Selectivity
Subjects
Details
- Language :
- English
- ISSN :
- 20416520
- Database :
- OpenAIRE
- Journal :
- Humby, J, Benson, O, Smith, G, Argent, S, Da Silva, I, Cheng, Y, Rudic, S, Manuel, P, Frogley, M, Cinque, G, Saunders, L K, Vitorica-yrzebal, I, Whitehead, G F S, Easun, T, Lewis, W, Blake, A J, Ramirez-cuesta, A J, Yang, S & Schroder, M 2019, ' Host-guest selectivity in a series of isoreticular metal-organic frameworks: observation of acetylene-to-alkyne and carbon dioxide-to-amide interactions ', Chemical Science, vol. 10, no. 4, pp. 1098-1106 . https://doi.org/10.1039/C8SC03622E, Chemical Science
- Accession number :
- edsair.doi.dedup.....0ace3208348a3f5ed57d222dc49e655d
- Full Text :
- https://doi.org/10.1039/C8SC03622E