Back to Search Start Over

Cu/SiO2 and Cu/SiO2–TiO2 Catalysts

Authors :
Nicoletta Ravasio
C.Partipilo Papalia
Gianmario Martra
Flora Boccuzzi
Source :
Journal of Catalysis. 184:316-326
Publication Year :
1999
Publisher :
Elsevier BV, 1999.

Abstract

Three 8 wt% copper catalysts supported on SiO{sub 2} and on two SiO{sub 2}/TiO{sub 2} powders with different TiO{sub 2} content have been prepared by a chemisorption-hydrolysis method. Transmission electron microscopy indicated that after calcination the three catalysts contain supported particles which are small and quite homogeneous in size (mean diameter, d{sub m} = 3.0 nm). These particles slightly increase in size after reduction in H{sub 2} up to 773 K (d{sub m} = 3.5 nm). On the basis of the diffuse reflectance UV-Vis-NIR spectra CuO and Cu{sub 2}O were found to be present after calcination, while the electronic spectra were dominated by the features due to metallic Cu particles already after a mild reduction in H{sub 2} at 523 K. FTIR spectra of CO adsorbed onto the three catalysts reduced at 523 K appeared very similar. By a spectral fitting procedure, four different carbonylic species were evidenced, three assigned to carbonylic adducts on different types of microfacets exposed at the surface of three-dimensional Cu particles and one related to CO molecules adsorbed on plate-like two-dimensional copper particles. By increasing the reduction temperature an overall decrease in intensity of the bands due to CO adsorbed on copper supported on silica-titaniamore » carriers was observed, probably because of the formation of titanium suboxides that can cover a fraction of the copper sites. Furthermore, the CO-O{sub 2} and CO-NO reactions were studied by FTIR spectroscopy of the adsorbed species and quadrupole mass analysis of the gas phase over the catalysts. This allows the elucidation of the nature of the surface sites involved in the activation of these molecules and the nature of the intermediates present at the surface of the catalysts during the reactions. The role played in these reactions by the uncoordinated copper surface atoms exposed at the surface of the two different types of Cu particles will be discussed.« less

Details

ISSN :
00219517
Volume :
184
Database :
OpenAIRE
Journal :
Journal of Catalysis
Accession number :
edsair.doi.dedup.....0abefad131da07c5b242a381ef42a289
Full Text :
https://doi.org/10.1006/jcat.1999.2428