Back to Search
Start Over
Constructive techniques for zeros of monotone mappings in certain Banach spaces
- Source :
- SpringerPlus
- Publisher :
- Springer Nature
-
Abstract
- Let E be a 2-uniformly convex real Banach space with uniformly Gâteaux differentiable norm, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^*$$\end{document}E∗ its dual space. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A:E\rightarrow E^*$$\end{document}A:E→E∗ be a bounded strongly monotone mapping such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{-1}(0)\ne \emptyset .$$\end{document}A-1(0)≠∅. For given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1\in E,$$\end{document}x1∈E, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_n\}$$\end{document}{xn} be generated by the algorithm: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x_{n+1}= J^{-1}( Jx_n -\alpha _nAx_n),\,n\ge 1, \end{aligned}$$\end{document}xn+1=J-1(Jxn-αnAxn),n≥1,where J is the normalized duality mapping from E into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^*$$\end{document}E∗ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\alpha _n\}$$\end{document}{αn} is a real sequence in (0, 1) satisfying suitable conditions. Then it is proved that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_n\}$$\end{document}{xn} converges strongly to the unique point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^*\in A^{-1}(0).$$\end{document}x∗∈A-1(0). Finally, our theorems are applied to the convex minimization problem.
Details
- Language :
- English
- ISSN :
- 21931801
- Volume :
- 4
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- SpringerPlus
- Accession number :
- edsair.doi.dedup.....0a82b7b2b0994b6c20e746c85146cb56
- Full Text :
- https://doi.org/10.1186/s40064-015-1169-2