Back to Search Start Over

Multi-gene detection and identification of mosquito-borne RNA viruses using an oligonucleotide microarray

Authors :
John S. Lee
Michael J. Turell
Scott S. McMenamy
Nathan D. Grubaugh
Source :
PLoS Neglected Tropical Diseases, Vol 7, Iss 8, p e2349 (2013), PLoS Neglected Tropical Diseases
Publication Year :
2013
Publisher :
Public Library of Science (PLoS), 2013.

Abstract

Background Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae), Alphavirus (Togaviridae), Orthobunyavirus (Bunyaviridae), and Phlebovirus (Bunyaviridae). Methodology/Principal Findings The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. Conclusions/Significance We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish public health priorities, detect disease outbreaks, and evaluate control programs.<br />Author Summary Approximately half of the world's population is at risk of viral, mosquito-borne illness such as dengue, yellow fever, Japanese encephalitis, Rift Valley fever, and chikungunya. In the past, these viruses have been regarded as pathogens of the tropics; however, they are emerging as global causes of illness. Very few effective drugs and vaccines have been developed for mosquito-borne viral infections and even less are available to people in resource-limited countries. An important aspect of disease prevention is mosquito surveillance to determine geographical range and seasonal prevalence of the associated viruses. However, there are hundreds of viruses transmitted by mosquitoes that are pathogenic to humans and animals. Using a portable microarray, we developed an assay with the ability to detect most of the known medically important viruses transmitted by mosquitoes. This assay was designed for use in conjunction with broad-range screening tools as a cost effective, rapid method to determine the identity of viruses from infected mosquitoes. To our knowledge, this is the most comprehensive assay to date for field surveillance of mosquito-borne viruses.

Details

Language :
English
ISSN :
19352735 and 19352727
Volume :
7
Issue :
8
Database :
OpenAIRE
Journal :
PLoS Neglected Tropical Diseases
Accession number :
edsair.doi.dedup.....0a6f0c737b59a0bed56d9c7b1bbece47