Back to Search
Start Over
Theoretical Study on the Gas Phase Reaction of Allyl Alcohol with Hydroxyl Radical
- Source :
- The Journal of Physical Chemistry A. 117:6629-6640
- Publication Year :
- 2013
- Publisher :
- American Chemical Society (ACS), 2013.
-
Abstract
- The complex potential energy surface of allyl alcohol (CH2CHCH2OH) with hydroxyl radical (OH) has been investigated at the G3(MP2)//MP2/6-311++G(d,p) level. On the surface, two kinds of pathways are revealed, namely, direct hydrogen abstraction and addition/elimination. Rice-Ramsperger-Kassel-Marcus theory and transition state theory are carried out to calculate the total and individual rate constants over a wide temperature and pressure region with tunneling correction. It is predicted that CH2CHOHCH2OH (IM1) formed by collisional stabilization is dominate in the temperature range (200-440 K) at atmospheric pressure with N2 (200-315 K at 10 Torr Ar and 100 Torr He). The production of CH2CHCHOH + H2O via direct hydrogen abstraction becomes dominate at higher temperature. The kinetic isotope effect (KIE) has also been calculated for the title reaction. Moreover, the calculated rate constants and KIE are in good agreement with the experimental data.
- Subjects :
- Hydrogen
Hydroxyl Radical
Propanols
Chemistry
Temperature
chemistry.chemical_element
Atmospheric temperature range
Hydrogen atom abstraction
Photochemistry
Kinetics
chemistry.chemical_compound
Atmospheric Pressure
Reaction rate constant
Models, Chemical
Potential energy surface
Kinetic isotope effect
Thermodynamics
Physical chemistry
Computer Simulation
Hydroxyl radical
Gases
Physical and Theoretical Chemistry
Allyl alcohol
Subjects
Details
- ISSN :
- 15205215 and 10895639
- Volume :
- 117
- Database :
- OpenAIRE
- Journal :
- The Journal of Physical Chemistry A
- Accession number :
- edsair.doi.dedup.....0a5547ff4fea8c73c30662362a57f1d1
- Full Text :
- https://doi.org/10.1021/jp402142b