Back to Search
Start Over
Liposomes to target peripheral neurons and Schwann cells
- Source :
- PLoS ONE, Vol 8, Iss 11, p e78724 (2013), PLoS ONE
- Publication Year :
- 2013
- Publisher :
- Public Library of Science (PLoS), 2013.
-
Abstract
- While a wealth of literature for tissue-specific liposomes is emerging, optimal formulations to target the cells of the peripheral nervous system (PNS) are lacking. In this study, we asked whether a novel formulation of phospholipid-based liposomes could be optimized for preferential uptake by microvascular endothelia, peripheral neurons and Schwann cells. Here, we report a unique formulation consisting of a phospholipid, a polymer surfactant and cholesterol that result in enhanced uptake by targeted cells. Using fluorescently labeled liposomes, we followed particle internalization and trafficking through a distinct route from dextran and escape from degradative compartments, such as lysosomes. In cultures of non-myelinating Schwann cells, liposomes associate with the lipid raft marker Cholera toxin, and their internalization is inhibited by disruption of lipid rafts or actin polymerization. In contrast, pharmacological inhibition of clathrin-mediated endocytosis does not significantly impact liposome entry. To evaluate the efficacy of liposome targeting in tissues, we utilized myelinating explant cultures of dorsal root ganglia and isolated diaphragm preparations, both of which contain peripheral neurons and myelinating Schwann cells. In these models, we detected preferential liposome uptake into neurons and glial cells in comparison to surrounding muscle tissue. Furthermore, in vivo liposome administration by intramuscular or intravenous injection confirmed that the particles were delivered to myelinated peripheral nerves. Within the CNS, we detected the liposomes in choroid epithelium, but not in myelinated white matter regions or in brain parenchyma. The described nanoparticles represent a novel neurophilic delivery vehicle for targeting small therapeutic compounds, biological molecules, or imaging reagents into peripheral neurons and Schwann cells, and provide a major advancement toward developing effective therapies for peripheral neuropathies.
- Subjects :
- Cholera Toxin
media_common.quotation_subject
lcsh:Medicine
Biology
Endocytosis
Nerve Fibers, Myelinated
03 medical and health sciences
Mice
0302 clinical medicine
Drug Delivery Systems
In vivo
Cell Line, Tumor
Parenchyma
medicine
Animals
Humans
Internalization
lcsh:Science
Lipid raft
030304 developmental biology
media_common
Neurons
0303 health sciences
Liposome
Multidisciplinary
lcsh:R
3. Good health
Cell biology
Rats
medicine.anatomical_structure
nervous system
Cell culture
Peripheral nervous system
Immunology
Liposomes
NIH 3T3 Cells
Nanoparticles
lcsh:Q
Schwann Cells
Lysosomes
030217 neurology & neurosurgery
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 8
- Issue :
- 11
- Database :
- OpenAIRE
- Journal :
- PLoS ONE
- Accession number :
- edsair.doi.dedup.....0a4508a8c6cbc0afacb48ea1e8627dc3