Back to Search Start Over

A novel approach to β-decay: PANDORA, a new experimental setup for future in-plasma measurements

Authors :
David Mascali
Domenico Santonocito
Simone Amaducci
Lucio Andò
Vincenzo Antonuccio
Sándor Biri
Alfio Bonanno
Vincenza Piera Bonanno
Stefan Briefi
Maurizio Busso
Luigi Celona
Luigi Cosentino
Sergio Cristallo
Marco Cuffiani
Costantino De Angelis
Giacomo De Angelis
Davide De Salvador
Loreto Di Donato
Jean-Eric Ducret
Aref Eshkevar Vakili
Ursel Fantz
Alessio Galatà
Carmelo Sebastiano Gallo
Santo Gammino
Tommaso Isernia
Hannu Koivisto
Karl-Ludwig Kratz
Risto Kronholm
Marco La Cognata
Silvia Leoni
Andrea Locatelli
Mario Maggiore
Fabio Maimone
Luciana Malferrari
Giorgio Mancini
Laurent Maunoury
Giorgio Sebastiano Mauro
Maria Mazzaglia
Alberto Mengoni
Andrea Miraglia
Bharat Mishra
Mario Musumeci
Daniel Ricardo Napoli
Eugenia Naselli
Fabrizio Odorici
Libero Palladino
Giuseppe Palmisano
Santi Pavone
Salvatore Pennisi
Albino Perego
Angelo Pidatella
Richard Rácz
Riccardo Reitano
Danilo Rifuggiato
Matteo Rinaldi
Antonio Domenico Russo
Filippo Russo
Gaetano Schillaci
Stefano Selleri
Stefano Simonucci
Gino Sorbello
Roberta Spartà
Simone Taioli
Klaus Tinschert
Giuseppe Torrisi
Antonio Trifirò
Sedina Tsikata
Aurora Tumino
Diego Vescovi
Luca Vincetti
ITA
Istituto Nazionale di Fisica Nucleare, Sezione di Catania (INFN)
Università degli studi di Catania = University of Catania (Unict)
INAF - Osservatorio Astrofisico di Catania (OACT)
Istituto Nazionale di Astrofisica (INAF)
Institute for Nuclear Research [Budapest] (ATOMKI)
Hungarian Academy of Sciences (MTA)
Max Planck Institute for Plasma physics (IPP-MPG)
Max-Planck-Gesellschaft
Department of Physics and Geology [Perugia]
Università degli Studi di Perugia = University of Perugia (UNIPG)
Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (INFN, Sezione di Perugia)
Istituto Nazionale di Fisica Nucleare (INFN)
Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (INFN, Sezione di Bologna)
Istituto Nazionale di Fisica Nucleare, Sezione di Milano (INFN)
Università degli Studi di Padova = University of Padua (Unipd)
Grand Accélérateur National d'Ions Lourds (GANIL)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
University of Jyväskylä (JYU)
Institute for Nuclear Chemistry, University of Mainz
GSI Helmholtzzentrum für Schwerionenforschung (GSI)
Università degli Studi di Camerino = University of Camerino (UNICAM)
University of L'Aquila [Italy] (UNIVAQ)
University of Catania [Italy]
University of Trento [Trento]
Università degli Studi di Pavia = University of Pavia (UNIPV)
Laboratori Nazionali di Legnaro (LNL)
Università degli studi di Parma = University of Parma (UNIPR)
Trento Institute for Fundamental Physics and Applications, Italy
Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences (MIFT)
Università degli Studi di Messina = University of Messina (UniMe)
Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE)
Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut des Sciences de l'Ingénierie et des Systèmes (INSIS - CNRS)
Goethe-University Frankfurt am Main
Source :
Universe, Universe; Volume 8; Issue 2; Pages: 80, Universe, 2022, 8 (2), pp.80. ⟨10.3390/universe8020080⟩
Publication Year :
2022

Abstract

International audience; Theoretical predictions as well as experiments performed at storage rings have shown that the lifetimes of β-radionuclides can change significantly as a function of the ionization state. In this paper we describe an innovative approach, based on the use of a compact plasma trap to emulate selected stellar-like conditions. It has been proposed within the PANDORA project (Plasmas for Astrophysics, Nuclear Decay Observation and Radiation for Archaeometry) with the aim to measure, for the first time in plasma, nuclear β-decay rates of radionuclides involved in nuclear-astrophysics processes. To achieve this task, a compact magnetic plasma trap has been designed to reach the needed plasma densities, temperatures, and charge-states distributions. A multi-diagnostic setup will monitor, on-line, the plasma parameters, which will be correlated with the decay rate of the radionuclides. The latter will be measured through the detection of the γ-rays emitted by the excited daughter nuclei following the β-decay. An array of 14 HPGe detectors placed around the trap will be used to detect the emitted γ-rays. For the first experimental campaign three isotopes, 176Lu, 134Cs, and 94Nb, were selected as possible physics cases. The newly designed plasma trap will also represent a tool of choice to measure the plasma opacities in a broad spectrum of plasma conditions, experimentally poorly known but that have a great impact on the energy transport and spectroscopic observations of many astrophysical objects. Status and perspectives of the project will be highlighted in the paper.

Details

Language :
English
ISSN :
22181997
Database :
OpenAIRE
Journal :
Universe, Universe; Volume 8; Issue 2; Pages: 80, Universe, 2022, 8 (2), pp.80. ⟨10.3390/universe8020080⟩
Accession number :
edsair.doi.dedup.....0a2eb573e9b3c50709d2e8b296f51bdd
Full Text :
https://doi.org/10.3390/universe8020080⟩