Back to Search Start Over

Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry

Authors :
Carine Arnaudguilhem
Joanna Szpunar
Pracha Cheajesadagul
Juwadee Shiowatana
Atitaya Siripinyanond
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM)
Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Food Chemistry, Food Chemistry, Elsevier, 2013, 141 (4), pp.3504-3509. ⟨10.1016/j.foodchem.2013.06.060⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

International audience; Rice is a staple food for nearly half the world’s population. The discrimination of geographical origin of rice in order to its authenticity is essential to prevent mislabeling and adulteration problems. The multi-element fingerprinting has a great potential for the differentiation of rice grains. A study of the capability of the high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) methodology for multi-element fingerprinting of rice has been carried out. A total of 31 Thai jasmine rice and 5 foreign (France, India, Italy, Japan and Pakistan) rice samples were analysed by high resolution ICP-MS after acid digestion. Accuracy of the whole procedure was verified by the analysis of rice flour standard reference material (NIST SRM 1568a). The concentrations of 21 elements were evaluated and used as chemical indicator to discriminate the origin of rice samples. The classification of rice samples was carried out based on elemental composition by a radar plot and multivariate data analysis, including principal component analysis (PCA) and discriminant analysis (DA). Thai jasmine rice can be differentiated from foreign rice samples by radar plots and multivariate data analysis. Furthermore, the DA can differentiate Thai jasmine rice samples according to each region of origin (northern, northeastern or central regions of Thailand). Therefore, multi-element fingerprinting combined with the use of multivariate statistical techniques can be considered as a powerful tool for rice authentication.

Details

Language :
English
ISSN :
03088146
Database :
OpenAIRE
Journal :
Food Chemistry, Food Chemistry, Elsevier, 2013, 141 (4), pp.3504-3509. ⟨10.1016/j.foodchem.2013.06.060⟩
Accession number :
edsair.doi.dedup.....0a1dcb052e70275f341b092c0930e69e
Full Text :
https://doi.org/10.1016/j.foodchem.2013.06.060⟩