Back to Search
Start Over
Corrigendum: Alterations of Gut Microbiota in Cholestatic Infants and Their Correlation With Hepatic Function
- Source :
- Frontiers in Microbiology, Vol 9 (2018), Frontiers in Microbiology
- Publication Year :
- 2018
- Publisher :
- Frontiers Media S.A., 2018.
-
Abstract
- Cholestasis is a major hepatic disease in infants, with increasing morbidity in recent years. Accumulating evidence has revealed that the gut microbiota (GM) is associated with liver diseases, such as non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. However, GM alterations in cholestatic infants and the correlation between the GM and hepatic functions remain uninvestigated. In this study, 43 cholestatic infants (IC group) and 37 healthy infants (H group) were enrolled to detect GM discrepancies using 16S rDNA analysis. The diversity in the bacterial community was significantly lower in the IC group than that in the H group (P = 0.013). After determining the top 10 abundant genera of microbes in the IC and H groups, we found that 13 of them were differentially enriched, including Bifidobacterium, Bacteroides, Streptococcus, Enterococcus, and Staphylococcus. As compared with the H group, the IC group had a more complex GM co-occurrence network featured by three core nodes: Phyllobacterium, Ruminococcus, and Anaerostipes. In addition, the positive correlation between Faecalibacterium and Erysipelatoclostridium (r = 0.689, P = 0.000, FDR = 0.009) was not observed in the IC patients. Using the GM composition, the cholestatic patients can be distinguished from healthy infants with high accuracy [areas under receiver operating curve (AUC) > 0.97], wherein Rothia, Eggerthella, Phyllobacterium, and Blautia are identified as valuable biomarkers. Using KEGG annotation, we identified 32 functional categories with significant difference in enrichment of the GM of IC patients, including IC-enriched functional categories that were related to lipid metabolism, biodegradation and metabolism of xenobiotics, and various diseases. In contrast, the number of functions associated with amino acid metabolism, nucleotide metabolism, and vitamins metabolism was reduced in the IC patients. We also identified significant correlation between GM composition and indicators of hepatic function. Megasphaera positively correlated with total bilirubin (r = 0.455, P = 0.002) and direct bilirubin (r = 0.441, P = 0.003), whereas γ-glutamyl transpeptidase was positively associated with Parasutterella (r = 0.466, P = 0.002) and negatively related to Streptococcus (r = -0.450, P = 0.003). This study describes the GM characteristics in the cholestatic infants, illustrates the association between the GM components and the hepatic function, and provides a solid theoretical basis for GM intervention for the treatment of infantile cholestasis.
- Subjects :
- 0301 basic medicine
Microbiology (medical)
co-abundance network
medicine.medical_specialty
Cirrhosis
Bilirubin
hepatic function
lcsh:QR1-502
medicine.disease_cause
Microbiology
lcsh:Microbiology
03 medical and health sciences
chemistry.chemical_compound
Cholestasis
Internal medicine
medicine
16S rRNA
Original Research
biology
bacterial biomarkers
Streptococcus
infantile cholestasis
Ruminococcus
Correction
Lipid metabolism
biology.organism_classification
medicine.disease
030104 developmental biology
Endocrinology
chemistry
Bacteroides
Steatohepatitis
Subjects
Details
- Language :
- English
- Volume :
- 9
- Database :
- OpenAIRE
- Journal :
- Frontiers in Microbiology
- Accession number :
- edsair.doi.dedup.....09d78c407c145937e48316f4ef3fda01