Back to Search Start Over

Real-Time Observation of Solvation Dynamics of Electron in Actinide Extraction Binary Solutions of Water and n-Tributyl Phosphate

Authors :
Jun Ma
Teseer Bahry
Mehran Mostafavi
Sergey A. Denisov
Philippe Moisy
Institut de Chimie Physique (ICP)
Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Commission des méthodes d'analyse du CEA (CETAMA)
Département de recherche sur les procédés pour la mine et le recyclage du combustible (DMRC)
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Nanjing University of Aeronautics and Astronautics [Nanjing] (NUAA)
Source :
Journal of Physical Chemistry B, Journal of Physical Chemistry B, American Chemical Society, 2021, 125 (15), pp.3843-3849. ⟨10.1021/acs.jpcb.0c10831⟩, Journal of Physical Chemistry B, 2021, 125 (15), pp.3843-3849. ⟨10.1021/acs.jpcb.0c10831⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

The excess electron in solution is a highly reactive radical involved in various radiation-induced reactions. Its solvation state critically determines the subsequent pathway and rate of transfer. For instance, water plays a dominating role in the electron-induced dealkylation of n-tributyl phosphate in actinide extraction processing. However, the underlying electron solvation processes in such systems are lacking. Herein, we directly observed the solvation dynamics of electrons in H-bonded water and n-tributyl phosphate (TBP) binary solutions with a mole fraction of water (Xw) varying from 0.05 to 0.51 under ambient conditions. Following the evolution of the absorption spectrum of trapped electrons (not fully solvated) with picosecond resolution, we show that electrons statistically distributed would undergo preferential solvation within water molecules extracted in TBP. We determine the time scale of excess electron full solvation from the deconvoluted transient absorption-kinetical data. The process of solvent reorganization accelerates by increasing the water molar fraction, and the rate of this process is 2 orders of magnitude slower compared to bulk water. We assigned the solvation process to hydrogen network reorientation induced by a negative charge of the excess electron that strongly depends on the local water environment. Our findings suggest that water significantly stabilizes the electron in a deeper potential than the pure TBP case. In its new state, the electron is likely to inhibit the dealkylation of extractants in actinide separation.

Details

Language :
English
ISSN :
15206106 and 15205207
Database :
OpenAIRE
Journal :
Journal of Physical Chemistry B, Journal of Physical Chemistry B, American Chemical Society, 2021, 125 (15), pp.3843-3849. ⟨10.1021/acs.jpcb.0c10831⟩, Journal of Physical Chemistry B, 2021, 125 (15), pp.3843-3849. ⟨10.1021/acs.jpcb.0c10831⟩
Accession number :
edsair.doi.dedup.....09bb4413f5aadb7b66d8c308b812b1d7
Full Text :
https://doi.org/10.1021/acs.jpcb.0c10831⟩