Back to Search Start Over

Temperature- and Photocontrolled Unfolding/Folding of a Triple-Helical Azobenzene-Stapled Collagen Peptide Monitored by Infrared Spectroscopy

Authors :
Josef Wachtveitl
Ulrike Kusebauch
Lisa Lorenz
Luis Moroder
Source :
Chemphyschem : a European journal of chemical physics and physical chemistry. 17(9)
Publication Year :
2015

Abstract

The triple-helical structure of a model collagen peptide possessing azobenzene-derived clamps integrated in all three strands as side-chain-to-side-chain crosslinks is analyzed by IR spectroscopy in comparative thermal excursion experiments with the triple helix of a typical reference collagen peptide consisting of only glycine-proline-hydroxyproline repeats. By exploiting the known stabilizing effects of aqueous alcoholic solvents on the unique collagen fold, deuterated ethylene glycol/water (1:1) is used as a solvent to investigate the effect of the light-switchable trans/cis-azobenzene clamp on the stability of the triple helix in terms of H/D exchange rates and thermal unfolding. Results of this comparative analysis clearly reveal only a minor destabilization of the triple helix by the hydrophobic azobenzene moieties compared to the reference collagen peptide as reflected by a lower midpoint of the thermal unfolding and higher rates of H/D exchange. However, it also reveals that the driving force exerted by the trans-to-cis photoisomerization of the azobenzene moieties is insufficient for unfolding of the compact triple-helical collagen fold. Only temperature-dependent untightening of this fold with heating results in a reversible photomodulated unfolding and refolding of the azo-collagen peptide into the original triple helix.

Details

ISSN :
14397641
Volume :
17
Issue :
9
Database :
OpenAIRE
Journal :
Chemphyschem : a European journal of chemical physics and physical chemistry
Accession number :
edsair.doi.dedup.....09ba3d95839f8de615503f23db57f3fb