Back to Search
Start Over
Accretion discs, low-mass protostars and planets: probing the impact of magnetic fields on stellar formation
- Publication Year :
- 2008
- Publisher :
- arXiv, 2008.
-
Abstract
- Whereas the understanding of most phases of stellar evolution made considerable progress throughout the whole of the twentieth century, stellar formation remained rather enigmatic and poorly constrained by observations until about three decades ago, when major discoveries (e.g., that protostars are often associated with highly collimated jets) revolutionized the field. At this time, it became increasingly clearer that magnetic fields were playing a major role at all stages of stellar formation. We describe herein a quick overview of the main breakthroughs that observations and theoretical modelling yielded for our understanding of how stars (and their planetary systems) are formed and on how much these new worlds are shaped by the presence of magnetic fields, either those pervading the interstellar medium and threading molecular clouds or those produced through dynamo processes in the convective envelopes of protostars or in the accretion discs from which they feed.<br />Comment: Proceedings of CNRS/PNPS astrophysical school on "stellar magnetic fields", EAS Publications Series
- Subjects :
- Physics
Star formation
Molecular cloud
Astrophysics (astro-ph)
General Engineering
Astronomy
FOS: Physical sciences
Astronomy and Astrophysics
Planetary system
Astrophysics
Accretion (astrophysics)
Interstellar medium
Space and Planetary Science
Planet
Protostar
Astrophysics::Solar and Stellar Astrophysics
Astrophysics::Earth and Planetary Astrophysics
Low Mass
Astrophysics::Galaxy Astrophysics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....099a609bae133b4f75315a6ac7a4ef93
- Full Text :
- https://doi.org/10.48550/arxiv.0804.0683