Back to Search
Start Over
Classification of Consistent Systems of Handlebody Group Representations
- Publication Year :
- 2022
-
Abstract
- The classifying spaces of handlebody groups form a modular operad. Algebras over the handlebody operad yield systems of representations of handlebody groups that are compatible with gluing. We prove that algebras over the modular operad of handlebodies with values in an arbitrary symmetric monoidal bicategory $\mathcal{M}$ (we introduce for these the name ansular functor) are equivalent to self-dual balanced braided algebras in $\mathcal{M}$. After specialization to a linear framework, this proves that consistent systems of handlebody group representations on finite-dimensional vector spaces are equivalent to ribbon Grothendieck-Verdier categories in the sense of Boyarchenko-Drinfeld. Additionally, it produces a concrete formula for the vector space assigned to an arbitrary handlebody in terms of a generalization of Lyubashenko's coend. Our main result can be used to obtain an ansular functor from vertex operator algebras subject to mild finiteness conditions. This includes examples of vertex operator algebras whose representation category has a non-exact monoidal product.<br />24 pages, 3 figures; v2: minor edits
- Subjects :
- Mathematics::Category Theory
Mathematics - Quantum Algebra
FOS: Mathematics
Quantum Algebra (math.QA)
Algebraic Topology (math.AT)
FOS: Physical sciences
Mathematical Physics (math-ph)
Mathematics - Algebraic Topology
Representation Theory (math.RT)
Mathematics::Geometric Topology
Mathematical Physics
Mathematics - Representation Theory
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....0981682631cdf7921c12be8d00a006d9