Back to Search Start Over

Spectral invariants towards a Non-convex Aubry-Mather theory

Authors :
Vichery, Nicolas
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
ANR-12-BS01-0020,WKBHJ,KAM faible au-delà de Hamilton-Jacobi(2012)
European Project: 258204,EC:FP7:ERC,ERC-2010-StG_20091028,REALUMAN(2010)
Vichery, Nicolas
BLANC - KAM faible au-delà de Hamilton-Jacobi - - WKBHJ2012 - ANR-12-BS01-0020 - BLANC - VALID
Real uniruled manifolds - REALUMAN - - EC:FP7:ERC2010-12-01 - 2015-11-30 - 258204 - VALID
Institut Camille Jordan (ICJ)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

Aubry-Mather is traditionally concerned with Tonelli Hamiltonian (convex and super-linear). In \cite{Vi,MVZ}, Mather's $\alpha$ function is recovered from the homogenization of symplectic capacities. This allows the authors to extend the Mather functional to non convex cases. This article shows that the relation between invariant measures and the subdifferential of Mather's functional (which is the foundational statement of Mather) is preserved in the non convex case. We give applications in the context of the classical KAM theory to the existence of invariant measures with large rotation vector after the possible disappearance of some KAM tori.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....092904c9d70785df376f6d3983653cb5