Back to Search
Start Over
Wide tolerance to amino acids substitutions in the OCTN1 ergothioneine transporter
- Source :
- Biochimica et Biophysica Acta (BBA) - General Subjects. 1860:1334-1342
- Publication Year :
- 2016
- Publisher :
- Elsevier BV, 2016.
-
Abstract
- Background Organic cation transporters transfer solutes with a positive charge across the plasma membrane. The novel organic cation transporter 1 (OCTN1) and 2 (OCTN2) transport ergothioneine and carnitine, respectively. Mutations in the SLC22A5 gene encoding OCTN2 cause primary carnitine deficiency, a recessive disorders resulting in low carnitine levels and defective fatty acid oxidation. Variations in the SLC22A4 gene encoding OCTN1 are associated with rheumatoid arthritis and Crohn disease. Methods Here we evaluate the functional properties of the OCTN1 transporter using chimeric transporters constructed by fusing different portion of the OCTN1 and OCTN2 cDNAs. Their relative abundance and subcellular distribution was evaluated through western blot analysis and confocal microscopy. Results Substitutions of the C-terminal portion of OCTN1 with the correspondent residues of OCTN2 generated chimeric OCTN transporters more active than wild-type OCTN1 in transporting ergothioneine. Additional single amino acid substitutions introduced in chimeric OCTN transporters further increased ergothioneine transport activity. Kinetic analysis indicated that increased transport activity was due to an increased V max , with modest changes in K m toward ergothioneine. Conclusions Our results indicate that the OCTN1 transporter is tolerant to extensive amino acid substitutions. This is in sharp contrast to the OCTN2 carnitine transporter that has been selected for high functional activity through evolution, with almost all substitutions reducing carnitine transport activity. General significance The widespread tolerance of OCTN1 to amino acid substitutions suggests that the corresponding SLC22A4 gene may have derived from a recent duplication of the SLC22A5 gene and might not yet have a defined physiological role.
- Subjects :
- 0301 basic medicine
Organic Cation Transport Proteins
Blotting, Western
Biophysics
CHO Cells
SLC22A5
Biochemistry
Article
Carnitine transport
Structure-Activity Relationship
03 medical and health sciences
chemistry.chemical_compound
Cricetulus
0302 clinical medicine
medicine
Animals
Humans
Carnitine
Molecular Biology
chemistry.chemical_classification
Microscopy, Confocal
Organic cation transport proteins
Symporters
biology
Ergothioneine
Biological Transport
Transporter
Amino acid
030104 developmental biology
Amino Acid Substitution
chemistry
biology.protein
Primary Carnitine Deficiency
030217 neurology & neurosurgery
medicine.drug
Subjects
Details
- ISSN :
- 03044165
- Volume :
- 1860
- Database :
- OpenAIRE
- Journal :
- Biochimica et Biophysica Acta (BBA) - General Subjects
- Accession number :
- edsair.doi.dedup.....08f4670c26952cd70193480d9cdebab1