Back to Search Start Over

Image classification using object detectors

Authors :
Matthieu Cord
Thibaut Durand
Nicolas Thome
Sandra Avila
Machine Learning and Information Access (MLIA)
Laboratoire d'Informatique de Paris 6 (LIP6)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Federal University of Minas Gerais (UFMG)
Universidade Federal de Minas Gerais [Belo Horizonte] (UFMG)
Source :
ICIP 2013 : IEEE International Conference on Image Processing, IEEE International Conference on Image Processing, IEEE International Conference on Image Processing, Sep 2013, Melbourne, Australia. pp.4340-4344, ⟨10.1109/ICIP.2013.6738894⟩, ICIP
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

International audience; Image categorization is one of the most competitive topic in computer vision and image processing. In this paper, we propose to use trained object and region detectors to represent the visual content of each image. Compared to similar methods found in the literature, our method encompasses two main areas of novelty: introducing a new spatial pooling formalism and designing a late fusion strategy for combining our rep-resentation with state-of-the art methods based on low-level descriptors, e.g. Fisher Vectors and BossaNova. Our experiments carried out in the challenging PASCAL VOC 2007 dataset reveal outstanding performances. When combined with low-level representations, we reach more than 67.6% in MAP, outperforming recently reported results in this dataset with a large margin.

Details

Language :
English
Database :
OpenAIRE
Journal :
ICIP 2013 : IEEE International Conference on Image Processing, IEEE International Conference on Image Processing, IEEE International Conference on Image Processing, Sep 2013, Melbourne, Australia. pp.4340-4344, ⟨10.1109/ICIP.2013.6738894⟩, ICIP
Accession number :
edsair.doi.dedup.....08f3e7803773d3a89418b8ffe122f2dc