Back to Search Start Over

On the rate of convergence in Wasserstein distance of the empirical measure

Authors :
Arnaud Guillin
Nicolas Fournier
Laboratoire de Probabilités et Modèles Aléatoires (LPMA)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques Blaise Pascal (LMBP)
Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Centre National de la Recherche Scientifique (CNRS)
Source :
Probability Theory and Related Fields, Probability Theory and Related Fields, 2015, 162 (3-4), pp.707, Probability Theory and Related Fields, Springer Verlag, 2015, 162 (3-4), pp.707
Publication Year :
2014
Publisher :
Springer Science and Business Media LLC, 2014.

Abstract

Let $$\mu _N$$ be the empirical measure associated to a $$N$$ -sample of a given probability distribution $$\mu $$ on $$\mathbb {R}^d$$ . We are interested in the rate of convergence of $$\mu _N$$ to $$\mu $$ , when measured in the Wasserstein distance of order $$p>0$$ . We provide some satisfying non-asymptotic $$L^p$$ -bounds and concentration inequalities, for any values of $$p>0$$ and $$d\ge 1$$ . We extend also the non asymptotic $$L^p$$ -bounds to stationary $$\rho $$ -mixing sequences, Markov chains, and to some interacting particle systems.

Details

ISSN :
14322064 and 01788051
Volume :
162
Database :
OpenAIRE
Journal :
Probability Theory and Related Fields
Accession number :
edsair.doi.dedup.....08ed4d1bf62f3baa38f35b7ee55fa938
Full Text :
https://doi.org/10.1007/s00440-014-0583-7