Back to Search
Start Over
Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers
- Source :
- Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
- Publication Year :
- 2021
-
Abstract
- Let $$\mathcal {M}_{X(\mathbb {R})}$$ be the Banach algebra of all Fourier multipliers on a Banach function space $$X(\mathbb {R})$$ such that the Hardy–Littlewood maximal operator is bounded on $$X(\mathbb {R})$$ and on its associate space $$X'(\mathbb {R})$$ . For two sets $$\varPsi ,\varOmega \subset \mathcal {M}_{X(\mathbb {R})}$$ , let $$\varPsi _\varOmega$$ be the set of those $$c\in \varPsi$$ for which there exists $$d\in \varOmega$$ such that the multiplier norm of $$\chi _{\mathbb {R}\setminus [-N,N]}(c-d)$$ tends to zero as $$N\rightarrow \infty$$ . In this case, we say that the Fourier multiplier c is equivalent at infinity to the Fourier multiplier d. We show that if $$\varOmega$$ is a unital Banach subalgebra of $$\mathcal {M}_{X(\mathbb {R})}$$ consisting of nice Fourier multipliers (for instance, continuous or slowly oscillating in certain sense) and $$\varPsi$$ is an arbitrary unital Banach subalgebra of $$\mathcal {M}_{X(\mathbb {R})}$$ , then $$\varPsi _\varOmega$$ is a also a unital Banach subalgebra of $$\mathcal {M}_{X(\mathbb {R})}$$ .
- Subjects :
- Slowly oscillating function
Function space
0211 other engineering and technologies
02 engineering and technology
01 natural sciences
Combinatorics
symbols.namesake
Banach algebra
0101 mathematics
Mathematics
Mathematics::Functional Analysis
C-algebra
Algebra and Number Theory
Functional analysis
Equivalence at infinity
010102 general mathematics
Subalgebra
Zero (complex analysis)
021107 urban & regional planning
Operator theory
Fourier transform
Fourier multiplier
Bounded function
symbols
Fourier convolution operator
Analysis
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
- Accession number :
- edsair.doi.dedup.....08c481085f16275c4c4fea0146d0f57b