Back to Search Start Over

A O ( m ) Self-Stabilizing Algorithm for Maximal Triangle Partition of General Graphs

Authors :
Hamamache Kheddouci
Mohammed Haddad
Volker Turau
Brahim Neggazi
Graphes, AlgOrithmes et AppLications (GOAL)
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École Centrale de Lyon (ECL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Université Lumière - Lyon 2 (UL2)
Source :
Parallel Processing Letters, Parallel Processing Letters, World Scientific Publishing, 2017, 27 (02), ⟨10.1142/S0129626417500049⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

The triangle partition problem is a generalization of the well-known graph matching problem consisting of finding the maximum number of independent edges in a given graph, i.e., edges with no common node. Triangle partition instead aims to find the maximum number of disjoint triangles. The triangle partition problem is known to be NP-complete. Thus, in this paper, the focus is on the local maximization variant, called maximal triangle partition (MTP). Thus, paper presents a new self-stabilizing algorithm for MTP that converges in O(m) moves under the unfair distributed daemon.

Details

Language :
English
ISSN :
01296264
Database :
OpenAIRE
Journal :
Parallel Processing Letters, Parallel Processing Letters, World Scientific Publishing, 2017, 27 (02), ⟨10.1142/S0129626417500049⟩
Accession number :
edsair.doi.dedup.....08bdf5d2e10a56ac7aeba000770af4ff
Full Text :
https://doi.org/10.1142/S0129626417500049⟩