Back to Search Start Over

The absorption spectrum of D2: Ultrasensitive cavity ring down spectroscopy of the (2–0) band near 1.7 μm and accurate ab initio line list up to 24 000 cm−1

Authors :
Jacek Komasa
Krzysztof Pachucki
Samir Kassi
Alain Campargue
LAsers, Molécules et Environnement (LAME-LIPhy)
Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy)
Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
Source :
Journal of Chemical Physics, Journal of Chemical Physics, American Institute of Physics, 2012, 136, pp.4309. ⟨10.1063/1.4707708⟩
Publication Year :
2012
Publisher :
AIP Publishing, 2012.

Abstract

Eleven very weak electric quadrupole transitions Q(2), Q(1), S(0)-S(8) of the first overtone band of D(2) have been measured by very high sensitivity CW-cavity ring down spectroscopy (CRDS) between 5850 and 6720 cm(-1). The noise equivalent absorption of the recordings is on the order of α(min) ≈ 3 × 10(-11) cm(-1). By averaging a high number of spectra, the noise level was lowered to α(min) ≈ 4 × 10(-12) cm(-1) in order to detect the S(8) transition which is among the weakest transitions ever detected in laboratory experiments (line intensity on the order of 1.8 × 10(-31) cm/molecule at 296 K). A Galatry profile was used to reproduce the measured line shape and derive the line strengths. The pressure shift and position at zero pressure limit were determined from recordings with pressures ranging between 10 and 750 Torr. A highly accurate theoretical line list was constructed for pure D(2) at 296 K. The intensity threshold was fixed to a value of 1 × 10(-34) cm/molecule at 296 K. The obtained line list is provided as supplementary material. It extends up to 24,000 cm(-1) and includes 201 transitions belonging to ten v-0 cold bands (v = 0-9) and three v-1 hot bands (v = 1-3). The energy levels include the relativistic and quantum electrodynamic corrections as well as the effects of the finite nuclear mass. The quadrupole transition moments are calculated using highly accurate adiabatic wave functions. The CRDS line positions and intensities of the first overtone band are compared to the corresponding calculated values and to previous measurements of the S(0)-S(3) lines. The agreement between the CRDS and theoretical results is found within the claimed experimental uncertainties (on the order of 1 × 10(-3) cm(-1) and 2% for the positions and intensities, respectively) while the previous S(0)-S(3) measurements showed important deviations for the line intensities.

Details

ISSN :
10897690 and 00219606
Volume :
136
Database :
OpenAIRE
Journal :
The Journal of Chemical Physics
Accession number :
edsair.doi.dedup.....08b9975393b9e6bd7ab1011a2e0bf7f6
Full Text :
https://doi.org/10.1063/1.4707708