Back to Search Start Over

Taurine Reprograms Mammary-Gland Metabolism and Alleviates Inflammation Induced by Streptococcus uberis in Mice

Authors :
Yulong Yin
Xinguang Lin
Xiangan Han
Zhixin Wan
Yuanyuan Xu
Riguo Lan
Zhenglei Wang
Yuanyuan Zhou
Shaodong Fu
Zhenhua Luo
Jinfeng Miao
Source :
Frontiers in Immunology, Frontiers in Immunology, Vol 12 (2021)
Publication Year :
2021
Publisher :
Frontiers Media SA, 2021.

Abstract

Streptococcus uberis (S. uberis) is an important pathogen causing mastitis, which causes continuous inflammation and dysfunction of mammary glands and leads to enormous economic losses. Most research on infection continues to be microbial metabolism-centric, and many overlook the fact that pathogens require energy from host. Mouse is a common animal model for studying bovine mastitis. In this perspective, we uncover metabolic reprogramming during host immune responses is associated with infection-driven inflammation, particularly when caused by intracellular bacteria. Taurine, a metabolic regulator, has been shown to effectively ameliorate metabolic diseases. We evaluated the role of taurine in the metabolic regulation of S. uberis-induced mastitis. Metabolic profiling indicates that S. uberis exposure triggers inflammation and metabolic dysfunction of mammary glands and mammary epithelial cells (the main functional cells in mammary glands). Challenge with S. uberis upregulates glycolysis and oxidative phosphorylation in MECs. Pretreatment with taurine restores metabolic homeostasis, reverses metabolic dysfunction by decrease of lipid, amino acid and especially energy disturbance in the infectious context, and alleviates excessive inflammatory responses. These outcomes depend on taurine-mediated activation of the AMPKā€“mTOR pathway, which inhibits the over activation of inflammatory responses and alleviates cellular damage. Thus, metabolic homeostasis is essential for reducing inflammation. Metabolic modulation can be used as a prophylactic strategy against mastitis.

Details

Language :
English
ISSN :
16643224
Volume :
12
Database :
OpenAIRE
Journal :
Frontiers in Immunology
Accession number :
edsair.doi.dedup.....088db6a2ce32d97cfe6034d78fc04c96
Full Text :
https://doi.org/10.3389/fimmu.2021.696101