Back to Search Start Over

K-eccentricity and absolute k-centrum of a probabilistic Tree

Authors :
Giovanni Andreatta
Francesco Mason
Publication Year :
1985
Publisher :
Elsevier BV:PO Box 211, 1000 AE Amsterdam Netherlands:011 31 20 4853757, 011 31 20 4853642, 011 31 20 4853641, EMAIL: nlinfo-f@elsevier.nl, INTERNET: http://www.elsevier.nl, Fax: 011 31 20 4853598, 1985.

Abstract

The k-eccentricity evaluated at a point x of a graph G is the sum of the (weighted) distances from x to the k vertices farthest from it. The k-centrum is the set of vertices for which the k-eccentricity is a minimum. The concept of k-centrum includes, as a particular case, that of center and that of centroid (or median) of a graph. The absolute k-centrum is the set of points (not necessarily vertices) for which the k-eccentricity is a minimum. In this paper it will be proven that, for a weighted tree, both deterministic and probabilistic, the k-eccentricity is a convex function and that the absolute k-centrum is a connected set and is contained in an elementary path. Hints will be given for the construction of an algorithm to find the k-centrum and the absolute k-centrum.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....087819fc068d4f65cf4dbd49b8e377a9