Back to Search Start Over

Shear thinning in deeply supercooled melts

Authors :
Vassiliy Lubchenko
Source :
Proceedings of the National Academy of Sciences. 106:11506-11510
Publication Year :
2009
Publisher :
Proceedings of the National Academy of Sciences, 2009.

Abstract

We compute, on a molecular basis, the viscosity of a deeply supercooled liquid at high shear rates. The viscosity is shown to decrease at growing shear rates, owing to an increase in the structural relaxation rate as caused by the shear. The onset of this non-Newtonian behavior is predicted to occur universally at a shear rate significantly lower than the typical structural relaxation rate, by approximately two orders of magnitude. This results from a large size—up to several hundred atoms—of the cooperative rearrangements responsible for mass transport in supercooled liquids and the smallness of individual molecular displacements during the cooperative rearrangements. We predict that the liquid will break down at shear rates such that the viscosity drops by approximately a factor of 30 below its Newtonian value. These phenomena are predicted to be independent of the liquid's fragility. In contrast, the degree of nonexponentiality and violation of the Stokes–Einstein law, which are more prominent in fragile substances, will be suppressed by shear. The present results are in agreement with existing measurements of shear thinning in silicate melts.

Details

ISSN :
10916490 and 00278424
Volume :
106
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....0801d9395b6bf67adbe4f29bcdb929c0
Full Text :
https://doi.org/10.1073/pnas.0900713106