Back to Search
Start Over
sparrpowR: a flexible R package to estimate statistical power to identify spatial clustering of two groups and its application
- Source :
- International Journal of Health Geographics, International Journal of Health Geographics, Vol 20, Iss 1, Pp 1-7 (2021)
- Publication Year :
- 2021
- Publisher :
- BioMed Central, 2021.
-
Abstract
- Background Cancer epidemiology studies require sufficient power to assess spatial relationships between exposures and cancer incidence accurately. However, methods for power calculations of spatial statistics are complicated and underdeveloped, and therefore underutilized by investigators. The spatial relative risk function, a cluster detection technique that detects spatial clusters of point-level data for two groups (e.g., cancer cases and controls, two exposure groups), is a commonly used spatial statistic but does not have a readily available power calculation for study design. Results We developed sparrpowR as an open-source R package to estimate the statistical power of the spatial relative risk function. sparrpowR generates simulated data applying user-defined parameters (e.g., sample size, locations) to detect spatial clusters with high statistical power. We present applications of sparrpowR that perform a power calculation for a study designed to detect a spatial cluster of incident cancer in relation to a point source of numerous environmental emissions. The conducted power calculations demonstrate the functionality and utility of sparrpowR to calculate the local power for spatial cluster detection. Conclusions sparrpowR improves the current capacity of investigators to calculate the statistical power of spatial clusters, which assists in designing more efficient studies. This newly developed R package addresses a critically underdeveloped gap in cancer epidemiology by estimating statistical power for a common spatial cluster detection technique.
- Subjects :
- General Computer Science
Relation (database)
Computer science
Disease cluster
computer.software_genre
lcsh:Computer applications to medicine. Medical informatics
01 natural sciences
Statistical power
010104 statistics & probability
03 medical and health sciences
0302 clinical medicine
Neoplasms
Cluster Analysis
Humans
030212 general & internal medicine
0101 mathematics
Spatial analysis
Statistic
Spatial Analysis
Point pattern
Incidence
Public Health, Environmental and Occupational Health
Methodology
Function (mathematics)
Spatial clustering
General Business, Management and Accounting
Power (physics)
Sample size determination
lcsh:R858-859.7
Data mining
Environmental epidemiology
computer
Cancer incidence
Subjects
Details
- Language :
- English
- ISSN :
- 1476072X
- Volume :
- 20
- Database :
- OpenAIRE
- Journal :
- International Journal of Health Geographics
- Accession number :
- edsair.doi.dedup.....07c6f5a9c7f8b4fc9699d0c0e6929d93