Back to Search Start Over

Passive structural monitoring based on data-driven matched field processing

Authors :
François Baqué
Sandrine T. Rakotonarivo
J.-F. Chaix
William A. Kuperman
Serge Mensah
Emma Lubeigt
Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA )
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Service de Technologie des Composants et des Procédés (STCP)
Département Technologie Nucléaire (DTN)
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Ondes et Imagerie (O&I)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Marine Physical Laboratory (MPL)
Scripps Institution of Oceanography (SIO - UC San Diego)
University of California [San Diego] (UC San Diego)
University of California (UC)-University of California (UC)-University of California [San Diego] (UC San Diego)
University of California (UC)-University of California (UC)
MISTRAL-Lab
Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)
Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)
Scripps Institution of Oceanography (SIO)
University of California-University of California-University of California [San Diego] (UC San Diego)
University of California-University of California
Source :
Journal of the Acoustical Society of America, Journal of the Acoustical Society of America, 2019, 145 (4), pp.EL317-EL322. ⟨10.1121/1.5099170⟩, Journal of the Acoustical Society of America, Acoustical Society of America, 2019, 145 (4), pp.EL317-EL322. ⟨10.1121/1.5099170⟩
Publication Year :
2019
Publisher :
Acoustical Society of America (ASA), 2019.

Abstract

A passive data-driven method to localize a defect in a structure using the ambient noise is derived. The approach requires only acoustic measurements in a spatially random noise field and no knowledge of the structure. Measurements are taken before and after the perturbation has occurred and Green's functions are retrieved by cross-correlating acoustic measurements. The difference between measured data reveals the perturbation. A frequency domain method based on matched field processing is then performed to localize the perturbation. The Bartlett, minimum variance and white noise gain constraint processors are implemented and their performances are illustrated on a numerical experiment.

Details

ISSN :
00014966 and 15208524
Volume :
145
Database :
OpenAIRE
Journal :
The Journal of the Acoustical Society of America
Accession number :
edsair.doi.dedup.....079c1aa49ea0d455ef6359fdcc5072fd
Full Text :
https://doi.org/10.1121/1.5099170