Back to Search
Start Over
Methods for Determining Mold Development and Condensation on the Surface of Building Barriers
- Source :
- Buildings, Vol 10, Iss 1, p 4 (2019), Buildings, Volume 10, Issue 1
- Publication Year :
- 2019
- Publisher :
- MDPI AG, 2019.
-
Abstract
- The article presents four equivalent methods for checking mold growth on the surface of building barriers and checking water vapor condensation on their surface. Each method applies to two parallel phenomena that may occur on a building barrier. The first method is to calculate and compare temperature factors. In the second method, the characteristic humidity in the room is calculated and compared. The third method is to calculate and compare the characteristic temperatures in the room. The fourth method is based on the calculation and comparison of characteristic water vapor pressures. Three boundary conditions are presented for each method and phenomenon: when a given phenomenon can occur, when it begins or ends, and when it does not occur. The presented methods systematize the approach to the problem of mold development and surface condensation. The presented calculation results relate to the selected building barrier functioning in specific indoor and outdoor climate conditions. The calculation results confirm the compliance of the presented methods in identifying the phenomenon of mold growth or condensation on the surface of the barrier. A graphical interpretation of the results for each method with periods of occurrence or absence of a given phenomenon is also presented.
- Subjects :
- Surface (mathematics)
surface condensation
Water vapor condensation
Materials science
Condensation
Humidity
Building and Construction
Mechanics
medicine.disease_cause
lcsh:TH1-9745
calculation methods
building barriers
Mold
Architecture
medicine
Development (differential geometry)
Boundary value problem
mold development
Water vapor
lcsh:Building construction
Civil and Structural Engineering
Subjects
Details
- ISSN :
- 20755309
- Volume :
- 10
- Database :
- OpenAIRE
- Journal :
- Buildings
- Accession number :
- edsair.doi.dedup.....077f342bc1c76b6e4009df2194e7dc66
- Full Text :
- https://doi.org/10.3390/buildings10010004