Back to Search Start Over

Myopic defocus in the evening is more effective at inhibiting eye growth than defocus in the morning: Effects on rhythms in axial length and choroid thickness in chicks

Authors :
Kristen Totonelly
Pearl Thai
Debora L. Nickla
Rinita Zanzerkia Trahan
Source :
Experimental Eye Research. 154:104-115
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

Animal models have shown that myopic defocus is a potent inhibitor of ocular growth: brief (1-2 h) daily periods of defocus are sufficient to counter the effects of much longer periods of hyperopic defocus, or emmetropic vision. While the variables of duration and frequency have been well-documented with regard to effect, we ask whether the efficacy of the exposures might also depend on the time of day that they are given. We also ask whether there are differential effects on the rhythms in axial length or choroidal thickness. 2-week-old chickens were divided into 2 groups: (1) "2-hr lens-wear". Chicks wore monocular +10D lenses for 2 h per day for 5 days at one of 3 times of day: 5:30 a.m. (n = 11), 12 p.m. (n = 8) or 7:30 p.m. (n = 11). (2) "2-hr minus lens-removal". Chicks wore monocular -10D lenses continually for 7 days, except for a 2-hr period when lenses were removed; the removal occurred at one of 2 times: 5:30 a.m. (n = 8) or 7:30 p.m. (n = 8). Both paradigms exposed eyes to brief myopic defocus that differed in its magnitude, and in the visual experience for the rest of the day. High frequency A-scan ultrasonography was done at the start of the experiment; on the last day, it was done at 6-hr intervals, starting at noon, over 24-hr, to assess rhythm parameters. Refractive errors were measured using a Hartinger's refractometer at the end. In both paradigms, myopic defocus in the evening was significantly more effective at inhibiting eye growth than in the morning ("2-hr lens-wear": X-C: -149 vs -83 μm/5d; "2-hr lens-removal": X-C: 91 vs 245 μm/7d; post-hoc Bonferroni test, p

Details

ISSN :
00144835
Volume :
154
Database :
OpenAIRE
Journal :
Experimental Eye Research
Accession number :
edsair.doi.dedup.....0779e5f93f60d27b7e58ce9fd9d68cd5