Back to Search Start Over

Enhanced production of dimethyl phthalate-degrading strain Bacillus sp. QD14 by optimizing fermentation medium

Authors :
Weihui Xu
Li Shanshan
Yu Zhidan
Mo Jixian
Zhigang Wang
Source :
Electronic Journal of Biotechnology v.18 n.3 2015, SciELO Chile, CONICYT Chile, instacron:CONICYT, Electronic Journal of Biotechnology, Volume: 18, Issue: 3, Pages: 244-251, Published: MAY 2015, Electronic Journal of Biotechnology, Vol 18, Iss 3, Pp 244-251 (2015)
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

article i nfo Background: Integrated statistical experimental designs were applied to optimize the medium constituents for the production of a dimethyl phthalate (DMP)-degrading strain Bacillus sp. QD14 in shake-flask cultures. A Plackett-Burman design (PBD) was applied to screen for significant factors, followed by the Steepest Ascent Method (SAM) to find the nearest region of maximum response. A Box-Behnken design (BBD) of the Response Surface Methodology (RSM) was conducted to optimize the final levels of the medium components. Results: After the regression equation and response surface contour plots were analyzed, the concentrations of glucose, corn meal and NaCl were found to significantly influence the biomass of DMP-degrading bacteria. A combination of 22.88 g/L of glucose, 11.74 g/L of corn meal, and 10.34 g/L of NaCl was optimum for maximum biomass production of Bacillus sp. QD14. A 57.11% enhancement of the biomass production was gained after optimization in shake-flask cultivation. The biomass production of Bacillus sp. QD14 reached 9.13 ± 0.29 × 10 8 CFU/mL, which was an excellent match for the predicted value, and the mean value of the match degree was as high as 99.30%. Conclusion: In this work, the key factors affected by the fermentation of DMP-degrading strain Bacillus sp. QD14 were optimized by PBD, SAM and BBD (RSM); the yield was increased by 57,11% in the conditions in our study. We propose that the conditions optimized in the study can be applied to the fermentation for commercialization production.

Details

ISSN :
07173458
Volume :
18
Database :
OpenAIRE
Journal :
Electronic Journal of Biotechnology
Accession number :
edsair.doi.dedup.....0729fbe5e53f77286a84a5c5fe86e170