Back to Search Start Over

A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein

Authors :
Matthew R. Whorton
Brian K. Kobilka
Søren G. F. Rasmussen
Richard N. Zare
Bo Huang
Roger K. Sunahara
Michael P. Bokoch
Source :
Proceedings of the National Academy of Sciences. 104:7682-7687
Publication Year :
2007
Publisher :
Proceedings of the National Academy of Sciences, 2007.

Abstract

G protein-coupled receptors (GPCRs) respond to a diverse array of ligands, mediating cellular responses to hormones and neurotransmitters, as well as the senses of smell and taste. The structures of the GPCR rhodopsin and several G proteins have been determined by x-ray crystallography, yet the organization of the signaling complex between GPCRs and G proteins is poorly understood. The observations that some GPCRs are obligate heterodimers, and that many GPCRs form both homo- and heterodimers, has led to speculation that GPCR dimers may be required for efficient activation of G proteins. However, technical limitations have precluded a definitive analysis of G protein coupling to monomeric GPCRs in a biochemically defined and membrane-bound system. Here we demonstrate that a prototypical GPCR, the β 2 -adrenergic receptor (β 2 AR), can be incorporated into a reconstituted high-density lipoprotein (rHDL) phospholipid bilayer particle together with the stimulatory heterotrimeric G protein, Gs. Single-molecule fluorescence imaging and FRET analysis demonstrate that a single β 2 AR is incorporated per rHDL particle. The monomeric β 2 AR efficiently activates Gs and displays GTP-sensitive allosteric ligand-binding properties. These data suggest that a monomeric receptor in a lipid bilayer is the minimal functional unit necessary for signaling, and that the cooperativity of agonist binding is due to G protein association with a receptor monomer and not receptor oligomerization.

Details

ISSN :
10916490 and 00278424
Volume :
104
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....06f12017ee900487e98eeee56691be8a
Full Text :
https://doi.org/10.1073/pnas.0611448104