Back to Search Start Over

The distribution of the number of parts of $m$-ary partitions modulo $m$

Authors :
Tom Edgar
Source :
Rocky Mountain J. Math. 47, no. 6 (2017), 1825-1838
Publication Year :
2016
Publisher :
arXiv, 2016.

Abstract

We investigate the number of parts modulo $m$ of $m$-ary partitions of a positive integer $n$. We prove that the number of parts is equidistributed modulo $m$ on a special subset of $m$-ary partitions. As consequences, we explain when the number of parts is equidistributed modulo $m$ on the entire set of partitions, and we provide an alternate proof of a recent result of Andrews, Fraenkel, and Sellers about the number of $m$-ary partitions modulo $m$.<br />Comment: 10 pages, 1 figure, To appear in Rocky Mountain Journal of Mathematics

Details

ISSN :
18251838
Database :
OpenAIRE
Journal :
Rocky Mountain J. Math. 47, no. 6 (2017), 1825-1838
Accession number :
edsair.doi.dedup.....06dbeb94d539fe071c92d5876320886a
Full Text :
https://doi.org/10.48550/arxiv.1603.00085