Back to Search
Start Over
The distribution of the number of parts of $m$-ary partitions modulo $m$
- Source :
- Rocky Mountain J. Math. 47, no. 6 (2017), 1825-1838
- Publication Year :
- 2016
- Publisher :
- arXiv, 2016.
-
Abstract
- We investigate the number of parts modulo $m$ of $m$-ary partitions of a positive integer $n$. We prove that the number of parts is equidistributed modulo $m$ on a special subset of $m$-ary partitions. As consequences, we explain when the number of parts is equidistributed modulo $m$ on the entire set of partitions, and we provide an alternate proof of a recent result of Andrews, Fraenkel, and Sellers about the number of $m$-ary partitions modulo $m$.<br />Comment: 10 pages, 1 figure, To appear in Rocky Mountain Journal of Mathematics
- Subjects :
- Distribution (number theory)
Partitions
congruence properties
General Mathematics
Modulo
Mathematics::Number Theory
010102 general mathematics
01 natural sciences
05A17, 11P83
Combinatorics
Set (abstract data type)
Equidistributed sequence
05A17
0103 physical sciences
m-ary partitions
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
FOS: Mathematics
Mathematics - Combinatorics
010307 mathematical physics
11P83
Combinatorics (math.CO)
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 18251838
- Database :
- OpenAIRE
- Journal :
- Rocky Mountain J. Math. 47, no. 6 (2017), 1825-1838
- Accession number :
- edsair.doi.dedup.....06dbeb94d539fe071c92d5876320886a
- Full Text :
- https://doi.org/10.48550/arxiv.1603.00085