Back to Search Start Over

Importance of the vegetation-groundwater-stream continuum to understand transformation of biogenic carbon in aquatic systems – A case study based on a pine-maize comparison in a lowland sandy watershed (Landes de Gascogne, SW France)

Authors :
Céline Charbonnier
Baptiste Voltz
Damien Buquet
Alain Mollier
Denis Loustau
Luiz C. Cotovicz
Dominique Poirier
Pierre Anschutz
Gwenaël Abril
Gwénaëlle Chaillou
Katixa Lajaunie
Christian Morel
Loris Deirmendjian
Laurent Augusto
Environnements et Paléoenvironnements OCéaniques (EPOC)
Observatoire aquitain des sciences de l'univers (OASU)
Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Interactions Sol Plante Atmosphère (UMR ISPA)
Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)
Écologie fonctionnelle et physique de l'environnement (EPHYSE)
Institut National de la Recherche Agronomique (INRA)
Universidade Federal Fluminense [Rio de Janeiro] (UFF)
Institut méditerranéen d'océanologie (MIO)
Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG)
Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Nord])
Biologie des Organismes et Ecosystèmes Aquatiques (BOREA)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)
Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS)
Interactions Sol Plante Atmosphère (ISPA)
Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de la Recherche Agronomique (INRA)
Écologie fonctionnelle et physique de l'environnement (EPHYSE - UR1263)
UMR 5805 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC)
Sorbonne Université (SU)-Université des Antilles (UA)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-Institut de Recherche pour le Développement (IRD)
Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)
Centre National de la Recherche Scientifique (CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut national des sciences de l'Univers (INSU - CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)
Source :
Science of the Total Environment, Science of the Total Environment, 2019, 661, pp.613-629. ⟨10.1016/j.scitotenv.2019.01.152⟩, Science of the Total Environment, Elsevier, 2019, 661, pp.613-629. ⟨10.1016/j.scitotenv.2019.01.152⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

During land-aquatic transfer, carbon (C) and inorganic nutrients (IN) are transformed in soils, groundwater, and at the groundwater-surface water interface as well as in stream channels and stream sediments. However, processes and factors controlling these transfers and transformations are not well constrained, particularly with respect to land use effect. We compared C and IN concentrations in shallow groundwater and first-order streams of a sandy lowland catchment dominated by two types of land use: pine forest and maize cropland. Contrary to forest groundwater, crop groundwater exhibited oxic conditions all-year round as a result of higher evapotranspiration and better lateral drainage that decreased the water table below the organic-rich soil horizon, prevented the leaching of soil-generated dissolved organic carbon (DOC) in groundwater, and thus limited consumption of dissolved oxygen (O-2). In crop groundwater, oxic conditions inhibited denitrification and methanogenesis resulting in high nitrate (NO3-; on average 1140 +/- 485 mu mol L-1) and low methane (CH4; 40 +/- 25 nmol L-1) concentrations. Conversely, anoxic conditions in forest groundwater led to lower NO3- (25 +/- 40 mu mol L-1) and higher CH4 (1770 +/- 1830 nmol L-1) concentrations. The partial pressure of carbon dioxide (pCO(2); 30,650 +/- 11,590 ppmv) in crop groundwater was significantly lower than in forest groundwater (50,630 +/- 26,070 ppmv), and was apparently caused by the deeper water table delaying downward diffusion of soil CO2 to the water table. In contrast, pCO(2) was not significantly different in crop (4480 +/- 2680 ppmv) and forest (4900 +/- 4500 ppmv) streams, suggesting faster degassing in forest streams resulting from greater water turbulence. Although NO3- concentrations indicated that denitrification occurred in riparian-forest groundwater, crop streams nevertheless exhibited important signs of spring and summer eutrophication such as the development of macrophytes. Stream eutrophication favored development of anaerobic conditions in crop stream sediments, as evidenced by increased ammonia (NH4+) and CH4 in stream waters and concomitant decreased in NO3- concentrations as a result of sediment denitrification. In crop streams, dredging and erosion of streambed sediments during winter sustained high concentration of particulate organic C, NH4+ and CH4. In forest streams, dissolved iron (Fe2+), NH4+ and CH4 were negatively correlated with O-2 reflecting the gradual oxygenation of stream water and associated oxidations of Fe2+, NH4+ and CH4. The results overall showed that forest groundwater behaved as source of CO2 and CH4 to streams, the intensity depending on the hydrological connectivity among soils, groundwater, and streams. CH4 production was prevented in cropland in soils and groundwater, however crop groundwater acted as a source of CO2 to streams (but less so than forest groundwater). Conversely, in streams, pCO(2) was not significantly affected by land use while CH4 production was enhanced by cropland. At the catchment scale, this study found substantial biogeochemical heterogeneity in C and IN concentrations between forest and crop waters, demonstrating the importance of including the full vegetation-groundwater-stream continuum when estimating land-water fluxes of C (and nitrogen) and attempting to understand their spatial and temporal dynamics.

Details

Language :
English
ISSN :
00489697 and 18791026
Database :
OpenAIRE
Journal :
Science of the Total Environment, Science of the Total Environment, 2019, 661, pp.613-629. ⟨10.1016/j.scitotenv.2019.01.152⟩, Science of the Total Environment, Elsevier, 2019, 661, pp.613-629. ⟨10.1016/j.scitotenv.2019.01.152⟩
Accession number :
edsair.doi.dedup.....06d90001691b7e8ec4a3952aca79df5c
Full Text :
https://doi.org/10.1016/j.scitotenv.2019.01.152⟩