Back to Search Start Over

Whole genome sequencing delineates regulatory, copy number, and cryptic splice variants in early onset cardiomyopathy

Authors :
Robert, Lesurf
Abdelrahman, Said
Oyediran, Akinrinade
Jeroen, Breckpot
Kathleen, Delfosse
Ting, Liu
Roderick, Yao
Gabrielle, Persad
Fintan, McKenna
Ramil R, Noche
Winona, Oliveros
Kaia, Mattioli
Shreya, Shah
Anastasia, Miron
Qian, Yang
Guoliang, Meng
Michelle Chan Seng, Yue
Wilson W L, Sung
Bhooma, Thiruvahindrapuram
Jane, Lougheed
Erwin, Oechslin
Tapas, Mondal
Lynn, Bergin
John, Smythe
Shashank, Jayappa
Vinay J, Rao
Jayaprakash, Shenthar
Perundurai S, Dhandapany
Christopher, Semsarian
Robert G, Weintraub
Richard D, Bagnall
Jodie, Ingles
Marta, Melé
Philipp G, Maass
James, Ellis
Stephen W, Scherer
M, Zarowiecki
Barcelona Supercomputing Center
Source :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Publication Year :
2022
Publisher :
Nature Research, 2022.

Abstract

Cardiomyopathy (CMP) is a heritable disorder. Over 50% of cases are gene-elusive on clinical gene panel testing. The contribution of variants in non-coding DNA elements that result in cryptic splicing and regulate gene expression has not been explored. We analyzed whole-genome sequencing (WGS) data in a discovery cohort of 209 pediatric CMP patients and 1953 independent replication genomes and exomes. We searched for protein-coding variants, and non-coding variants predicted to affect the function or expression of genes. Thirty-nine percent of cases harbored pathogenic coding variants in known CMP genes, and 5% harbored high-risk loss-of-function (LoF) variants in additional candidate CMP genes. Fifteen percent harbored high-risk regulatory variants in promoters and enhancers of CMP genes (odds ratio 2.25, p = 6.70 × 10−7 versus controls). Genes involved in α-dystroglycan glycosylation (FKTN, DTNA) and desmosomal signaling (DSC2, DSG2) were most highly enriched for regulatory variants (odds ratio 6.7–58.1). Functional effects were confirmed in patient myocardium and reporter assays in human cardiomyocytes, and in zebrafish CRISPR knockouts. We provide strong evidence for the genomic contribution of functionally active variants in new genes and in regulatory elements of known CMP genes to early onset CMP. This project was supported by the Ted Rogers Centre for Heart Research (SM, JE), the Canadian Institutes of Health Research (PJT 175034) (SM, JE) and by the Canadian Institutes of Health Research (ENP 161429), under the frame of ERA PerMed (SM). SM holds the Heart and Stroke Foundation of Canada & Robert M Freedom Chair in Cardiovascular Science. SWS holds the GlaxoSmithKline Endowed Chair in Genome Sciences at the Hospital for Sick Children and the University of Toronto. PGM holds a Canada Research Chair Tier 2 in Non-coding Disease Mechanisms. PGM acknowledges the support of the Government of Canada’s New Frontiers in Research Fund (NFRF), [NFRFE-2018-01305]. EO holds the Bitove Family Professorship of Adult Congenital Heart Disease. MM holds a Ramon y Cajal grant from the Spanish Ministry of Science and Innovation (RYC-2017-22249). WO is supported by funding from Fundació La Marató (321/C/2019). JB is funded by a Frans Van de Werf fellowship for clinical cardiovascular research, and by a senior clinical investigator fellowship of the FWO Flanders. KM was a National Science Foundation Graduate Research Fellow under grant no. DGE1144152 during the majority of the project. CS is the recipient of a National Health and Medical Research Council (NHMRC) Practitioner Fellowship (1154992). JI is the recipient of an NHMRC Career Development Fellowship (1162929). RDB is the recipient of a New South Wales Health Cardiovascular Disease Senior Scientist Grant. PSD is supported by the DBT/Wellcome Trust- Indian Alliance. We acknowledge the Labatt Family Heart Centre Biobank at the Hospital for Sick Children for access to DNA samples, and The Centre for Applied Genomics at the Hospital for Sick Children for performing WGS. We thank Xiucheng Cui and Emanuela Pannia for performing the zebrafish experiments at the SickKids Zebrafish Genetics and Disease Models Core (CRISPR-Cas9 and gRNA syntheses, zebrafish embryo microinjections, gRNA PCR validation, qRT-PCR, cardiac imaging). This research was made possible through access to the data and findings generated by the 100,000 Genomes Project. The 100,000 Genomes Project is managed by Genomics England Limited (a wholly owned company of the Department of Health and Social Care). The 100,000 Genomes Project is funded by the National Institute for Health Research and NHS England. The Wellcome Trust, Cancer Research UK and the Medical Research Council have also funded research infrastructure. The 100,000 Genomes Project uses data provided by patients and collected by the National Health Service as part of their care and support. We thank members of the ICGC/PCAWG working groups for generating the variant calls used in our case-control burden analyses. Peer Reviewed "Article signat per 38 autors/es: Robert Lesurf, Abdelrahman Said, Oyediran Akinrinade, Jeroen Breckpot, Kathleen Delfosse, Ting Liu, Roderick Yao, Gabrielle Persad, Fintan McKenna, Ramil R. Noche, Winona Oliveros, Kaia Mattioli, Shreya Shah, Anastasia Miron, Qian Yang, Guoliang Meng, Michelle Chan Seng Yue, Wilson W. L. Sung, Bhooma Thiruvahindrapuram, Jane Lougheed, Erwin Oechslin, Tapas Mondal, Lynn Bergin, John Smythe, Shashank Jayappa, Vinay J. Rao, Jayaprakash Shenthar, Perundurai S. Dhandapany, Christopher Semsarian, Robert G. Weintraub, Richard D. Bagnall, Jodie Ingles, Genomics England Research Consortium, Marta Melé, Philipp G. Maass, James Ellis, Stephen W. Scherer & Seema Mital"

Details

Language :
English
Database :
OpenAIRE
Journal :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Accession number :
edsair.doi.dedup.....06c17280981c333134a3fa06d7ec9729