Back to Search
Start Over
Approximation of stability radii for large-scale dissipative Hamiltonian systems
- Source :
- Advances in Computational Mathematics
- Publication Year :
- 2020
- Publisher :
- Technische Universität Berlin, 2020.
-
Abstract
- A linear time-invariant dissipative Hamiltonian (DH) system (x) over dot = (J-R)Qx, with a skew-Hermitian J, a Hermitian positive semidefinite R, and a Hermitian positive definite Q, is always Lyapunov stable and under further weak conditions even asymptotically stable. By exploiting the characterizations from Mehl et al. (SIAM J. Matrix Anal. Appl. 37(4), 1625-1654, 2016), we focus on the estimation of two stability radii for large-scale DH systems, one with respect to non-Hermitian perturbations of R in the form R + B Delta C-H for given matrices B, C, and another with respect to Hermitian perturbations in the form R + B Delta B-H, Delta = Delta(H). We propose subspace frameworks for both stability radii that converge at a superlinear rate in theory. The one for the non-Hermitian stability radius benefits from the DH structure-preserving model order reduction techniques, whereas for the Hermitian stability radius we derive subspaces yielding a Hermite interpolation property between the full and projected problems. With the proposed frameworks, we are able to estimate the two stability radii accurately and efficiently for large-scale systems which include a finite-element model of an industrial disk brake.<br />Deutsche Forschungsgemeinschaft, Project ME 40-1 of Priority Program 1897, Calm, Smooth and Smart; Deutsche Forschungsgemeinschaft, Project A02 of Sonderforschungsbereich 910
- Subjects :
- Lyapunov function
0209 industrial biotechnology
Applied Mathematics
010103 numerical & computational mathematics
02 engineering and technology
Positive-definite matrix
01 natural sciences
Hermitian matrix
Hamiltonian system
Dissipative hamiltonian system
Robust stability
Stability radius
Eigenvalue optimization
Subspace projection
Structure-preserving subspace framework
Hermite interpolation
Computational Mathematics
symbols.namesake
020901 industrial engineering & automation
Stability theory
symbols
Dissipative system
0101 mathematics
ddc:510
Hamiltonian (quantum mechanics)
Mathematics, applied
Mathematics
Mathematical physics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Advances in Computational Mathematics
- Accession number :
- edsair.doi.dedup.....06a9cb4d438d7a3ba140efcfb10b9fb1